4-Be- 9

  4-Be-  9 JAEA       Eval-Feb09 K.Shibata                        
 JAERI-M 84-226       DIST-MAY10                       20100217   
----JENDL-4.0         MATERIAL  425                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
HISTORY                                                           
84-08   Reevaluated for JENDL-3 by K.Shibata.                     
        Details of the evaluation are given in ref/1/.            
89-01   Modified by considering neutron emission spectra          
94-02   Evaluated for JENDL Fusion File.                          
        Neutron and alpha emission spectra from the (n,2n)        
        reaction were calculated and given in MF6.                
        Elastic angular distributios were modified by taking      
        account of new measurements.                              
99-07   DDX above 15 MeV were modified by considering the         
        measurements /45/.                                        
01-09   Compiled by K.Shibata for JENDL-3.3.                      
        The library was taken from JENDL fusion file.             
        ** modified parts for JENDL-3.3 (change from JENDL FF)****
        (1,451)        Updated.                                   
        (3,251)        Deleted.                                   
        (6,16)         Above 15 MeV.                              
        (4,2)          Transformation matrix deleted.             
        **********************************************************
10-02   Re-evaluated by K.Shibata for JENDL-4.                    
        *** Modified parts for JENDL-4 ***************************
        (1,451)        Updated                                    
        (3,1)          Modified                                   
        (3,2)          Re-calculated                              
        (3,16)         Revised near the threshold                 
        (3,102)        Thermal cross section was updated.         
        **********************************************************
                                                                  
MF=1          General Information                                 
  MT=451   Descriptive data                                       
                                                                  
MF=2          Resonance Parameter                                 
  MT=151   Scattering radius only.                                
                                                                  
MF=3          Cross Sections                                      
    Thermal cross sections and resonance integrals at 300 K       
    ----------------------------------------------------------    
                     0.0253 eV           res. integ. (*)          
                      (barns)              (barns)                
    ----------------------------------------------------------    
     Total           6.5119E+00                                   
     Elastic         6.5027E+00                                   
     n,gamma         8.4909E-03           3.8223E-03              
    ----------------------------------------------------------    
       (*) Integrated from 0.5 eV to 10 MeV.                      
                                                                  
  MT=1     Sig-t                                                  
        Below 1 eV, sum of sig-el and sig-cap.  Between 1 eV and  
        830 keV, the cross section was calculated on the basis of 
        the R-matrix theory.  The R-matrix parameters were        
        obtained so as to give the best fit to the experimental   
        data /2/-/6/.  Above 830 keV, based on the measurements   
        /5/,/7/,/8/.                                              
        *****  For JENDL-4 ***************************************
        In the energy region from 80 keV to 890 keV, the cross    
        sections were reduced by considering those of JENDL-2     
        and the latest experimental data./46/                     
        **********************************************************
  MT=2     Sig-el                                                 
        Below 1 eV, sig-el = 6.151 barns.                         
        Above 1 ev, the cross section was obtained by subtracting 
        the reaction cross section from the total cross section.  
  MT=3     Non-elastic                                            
        Sum of MT=16,102,104,103,105,107                          
  MT=16                                                           
        The cross sections were evaluated on the basis of         
        experimental data /9/-/17/.                               
        *****  For JENDL-4 ***************************************
        The cross sections near the threshold were modified on the
        basis of the measurements/11/.                            
        **********************************************************
  MT=102   Capture                                                
        Thermal cross section of 8.49E-3 barn was obtained from   
        the data measured by Conneely et al./18/                  
        1/v curve was assumed over the whole energy range.        
  MT=103   (n,p)                                                  
        Calculated with the statistical model.                    
        Neutron potential parameters were taken from the work     
        of Agee and Rosen /19/:                                   
           V = 49.3 - 0.33E, Ws = 5.75   , Vso = 5.5    (MeV)     
           r = 1.25        , rs = 1.25   , rso = 1.25   (fm)      
           a = 0.65        , b  = 0.70   , aso = 0.65   (fm)      
        Proton potential parameters are the following /20/:       
           V = 59.5 - 0.36e, Ws = 12.0 + 0.07E, Vso = 4.9   (MeV) 
           r = 1.24        , rs = 1.36        , rso = 1.2   (fm)  
           rc= 1.3                                          (fm)  
           a = 0.63        , b  = 0.35        , aso = 0.31  (fm)  
        The cross section was normalized to the experimental data 
        of Augustson and Menlove /21/, who measured delayed       
        neutros, by taking account of the branching ratio         
        of 49.5% for Li-9 => Be-9* => 2a + n.                     
  MT=104   (n,d)                                                  
        Based on the experimental data of Scobel /22/.            
  MT=105   (n,t)                                                  
        Based on experimental data /23/-/27/.                     
  MT=107   (n,a0)                                                 
        Based on the experimental data /28/-/33/.                 
  MT=251   Mu-bar                                                 
        Calculated from the data in file4.                        
  MT=700   (n,t0)                                                 
        Calculated with the statistical model.                    
        Triton potential parameters are the following /34/:       
           V = 140.0  , Ws = 7.5  , Vso = 6.0              (MeV)  
           r = 1.20   , rs = 2.69 , rso = 1.20 , rc = 1.30 (fm)   
           a = 0.45   , b  = 0.36 , aso = 0.7              (fm)   
        Normalization was taken so that the total (n,t) cross     
        section might be consistent with experimental data.       
  MT=701   (n,t1)                                                 
        Total (n,t) - (n,t1)                                      
                                                                  
                                                                  
MF=4          Angular Distributions                               
  MT=2                                                            
        1.0E-5 eV to 50 keV   Isotropic in CM.                    
        50 keV to 17 MeV      Based on the experimental data      
                              /35/-/42/.                          
        18 MeV to 20 MeV      Optical-model calculations using    
                              the potential parameters of         
                              Agee and Rosen /19/.                
MF=6          Double Differential Cross Sections                  
  MT=16                                                           
        Calculated by taking account of kinematics of             
        possible reactions.  The following reactions were         
        taken into account:                                       
          n + Be-9 -> 2n + Be-8       -> 2n + 2a                  
                   -> He-5 + He-5     -> 2n + 2a                  
                   -> a + He-6(1.8)   -> 2n + 2a                  
                   -> n + Be-9(2.4)   -> 2n + Be-8    -> 2n + 2a  
                   -> n + Be-9(4.7)   -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
                   -> n + Be-9(6.8)   -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
                   -> n + Be-9(7.9)   -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
                   -> n + Be-9(11.28) -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
                   -> n + Be-9(11.81) -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
                   -> n + Be-9(13.79) -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
                   -> n + Be-9(cont.) -> 2n + Be-8    -> 2n + 2a  
                                      -> n + a + He-5 -> 2n + 2a  
        The branching ratio of each reaction was determined on    
        the basis of experimental data and of statistical model   
        calculations.                                             
  MT=600                                                          
        Isotropic angular distribution assumed.                   
  MT=650                                                          
        Isotropic angular distribution assumed.                   
  MT=700                                                          
        Isotropic angular distribution assumed.                   
  MT=701                                                          
        Isotropic angular distribution assumed.                   
  MT=800                                                          
        Angular distributions were obtained from the work of      
        Smolec et al./43/                                         
                                                                  
MF=12         Photon-Production Multiplicities                    
  MT=102                                                          
        Based on the measurements of Jurney /44/.                 
                                                                  
MF=14         Photon Angular Distributions                        
  MT=102                                                          
        Assumed to be isotropic.                                  
                                                                  
References                                                        
 1) Shibata, K.: JAERI-M 84-226 (1984).                           
 2) Bockelman, C.K.: Phys. Rev. 80 (1950) 1011.                   
 3) Hibdon, C.T. and Langsdorf, Jr., A.: Phys. Rev. 98 (1955) 223.
 4) Bilpuch, E.G. et al.: Taken from EXFOR (1962).                
 5) Schwartz, R.B. et al.: Bull. Am. Phys. Soc. 16 (1971) 495.    
 6) Cabe, J and Cance, M.: CEA-R-4524 (1973).                     
 7) Foster, Jr. D.G. and Glasgow, D.W.: Phys. Rev. C3 (1971) 576. 
 8) Auchampaugh, G.F. et al.: Nucl. Sci. Eng. 69 (1979) 30.       
 9) Ashby, V.J. et al.: Phys. Rev. 111 (1958) 616.                
10) Catron, H.C. et al.: Phys. Rev. 123 (1961) 218.               
11) Holmberg, M. and Hansen, J.: Nucl. Phys. A129 (1969) 305.     
12) Bloser, M: Atomkernenergie 20 (1972) 309.                     
13) Drake, D.M. et al.: Nucl. Sci. Eng. 63 (1977) 401.            
14) Auchampaugh G.F. et al.: Proc. Symp. Neutron Cross Sections   
    from 10 to 40 MeV, BNL, 1977, p.231.                          
15) Baba, M. et al.: Proc. Int. Conf. Neutron Physics and Nuclear 
    Data for Reactors and Other Applied Purposes, Harwell 1978,   
    (1979), p.198.                                                
16) Takahasi, A. et al.: Proc. Int. Conf. Nuclear Data for        
    Science and Technology, Mito, 1988, p.205 (1988).             
17) Baba, M et al.: ibid., p.209 (1988).                          
18) Conneely, C.M. et al.: Nucl. Instrum. Meth., A248 (1986) 426. 
19) Agee, F.P. and Rosen, L.: LA-3538-MS (1966).                  
20) Votava, H.J. et al.: Nucl. Phys. A204 (1973) 529.             
21) Augustson, R.H. and Menlove, H.O.: Nucl. Sci. Eng. 54(1974)190
22) Scobel, W.: Z. Naturforsch. A24 (1969) 1858.                  
23) Wyman, M.E et al.: Phys. Rev. 112 (1958) 1264.                
24) Biro, T. et al.: J. Inorg. Nucl. Chem. 37 (1975) 1583.        
25) Body, Z.T. et al.: Proc. Int. Conf. Nuclear Data for          
    Science and Technology, Antwerp, 1982, p.368 (1982).          
26) Liskien, H. et al.: Nucl. Sci. Eng. 98 (1988) 266.            
27) Woelfle, R. et al.: Radiochimica Acta 50 (1990) 5.            
28) Shibata, K. and Shirato, S.: J. Phys. Soc. Jpn. 52 (1983) 3748
29) Perroud, J.P. and Sellem, Ch.: Nucl. Phys. A227 (1974) 330.   
30) Battat, M.E. and Ribe, F.L.: Nucl. Phys. 89 (1953) 80.        
31) Stelson, P.H. and Campbell, E.C.: Nucl. Phys. 106 (1957) 1252.
32) Bass, R. et al.: Nucl. Phys. 23 (1961) 122.                   
33) Paic, G. et al.: Nucl. Phys. A96 (1967) 476.                  
34) Luedecke, H. et al.: Nucl. Phys. A109 (1968) 676.             
35) Marion, J.B. et al.: Phys. Rev. 114 (1959) 1584.              
36) Levin, J.S. and Cranberg, L.: Taken from EXFOR (1960).        
37) Phillips, D.D.: Taken from EXFOR (1961).                      
38) Lane, R.O. et al.: Ann. Phys. 12 (1961) 135.                  
39) Lane, R.O. et al.: Phys. Rev. 133B (1964) 409.                
40) Hogue , H.H. et al.: Nucl. Sci. Eng. 68 (1978) 38.            
41) Sugimoto, M. et al.: Nucl. Sci. Eng. 103 (1989) 37.           
42) Templon, J.A., et al.: Nucl. Sci. Eng. 91 (1985) 451.         
43) Smolec, W. et al.: Nucl. Phys. A257 (1976) 397.               
44) Jurney, E.T.: Proc. Third Symp. Neutron Capture Gamma Rays,   
    BNL 1978, (1979), p.46.                                       
45) Ibaraki, M., et al.: J. Nucl. Sci. Technol., 35, 843 (1998).  
46) Danon, Y., et al.: Nucl. Sci. Eng., 161, 321 (2009).