48-Cd-106 JAEA EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+ DIST-MAY10 20100316 ----JENDL-4.0 MATERIAL 4825 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 Re-evaluation was performed for JENDL-4.0 The resolved resonance parameters were not changed from JENDL-3.3 10-03 Compiled by S.Kunieda MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters - Resolved resonance region (MLBW formula): below 700 eV Resonance parameters were based on Mughabghab et al./1/ Neutron orbital angular momentum L of some resonances was estimated with a method of Bollinger and Thomas/2/. Average radiation width of 0.153 eV was determined from the experimental data of Musgrove et al./3/ above 2.6 keV. Scattering radius of 6.5 fm was adopted from the systematics of measured values. A negative resonance was added so as to reproduce the thermal capture cross section given by Mughabghab et al. ***** For JENDL-3.3 ************************************* R was changed from 6.5fm to 6.2fm so as to reproduce measured elemental total cross sections. *********************************************************** No update was made for JENDL-4.0. - Unresolved resonance region: 700 eV - 300 keV The parameters were obtained by fitting to the total and capture cross sections calculated by the POD code /4/. The ASREP code /5/ was employed in this evaluation. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections & resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 6.02808E+00 Elastic 5.05825E+00 n,gamma 9.69829E-01 9.13937E+00 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section The OPTMAN /6/ & POD /4/ calculations. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT= 4,51-91 (n,n') cross section The OPTMAN /6/ & POD /4/ calculations. MT= 16 (n,2n) cross section MT= 17 (n,3n) cross section MT= 22 (n,na) cross section MT= 28 (n,np) cross section MT= 32 (n,nd) cross section Calculated by the POD code /4/. MT=102 Capture cross section Calculated by the POD code /4/. The value of gamma-ray strength function was determined to reproduce experimental capture cross sections measured by Musgrove et al /3/. MT=103 (n,p) cross section MT=104 (n,d) cross section MT=105 (n,t) cross section MT=106 (n,He3) cross section MT=107 (n,a) cross section Calculated by the POD code /4/. MT=203 (n,xp) cross section Sum of (n,np) and (n,p) MT=204 (n,xd) cross section Sum of (n,nd) and (n,d) MT=205 (n,xt) cross section MT=206 (n,xHe3) cross section Calculated by the POD code /4/. MT=207 (n,xa) cross section Sum of (n,na) and (n,a) MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering The OPTMAN /6/ & POD /4/ calculations. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction MT= 17 (n,3n) reaction MT= 22 (n,na) reaction MT= 28 (n,np) reaction MT= 32 (n,nd) reaction Neutron spectra calculated by the POD code /4/. MT= 51-90 (n,n') reaction Neutron angular distributions calculated by OPTMAN /6/ & POD /4/. MT= 91 (n,n') reaction Neutron spectra calculated by the POD code /4/. MT= 203 (n,xp) reaction MT= 204 (n,xd) reaction MT= 205 (n,xt) reaction MT= 206 (n,xHe3) reaction MT= 207 (n,xa) reaction Light-ion spectra calculated by the POD code /6/. MF=12 Gamma-ray multiplicities MT= 3 Non-elastic gamma emission Calculated by the POD code /4/. MF=14 Gamma-ray angular distributions MT= 3 Non-elastic gamma emission Assumed to be isotropic. MF=15 Gamma-ray spectra MT= 3 Non-elastic gamma emission Calculated by the POD code /4/.*************************************************************** * Nuclear Model Calculations with POD Code /4/ * *************************************************************** 1. Theoretical models The POD code is based on the spherical optical model, the distorted-wave Born approximaiton (DWBA), one-component exciton preequilibrium model, and the Hauser-Feshbach-Moldauer statis- tical model. With the preequilibrium model, semi-empirical pickup and knockout process can be taken into account for composite-particle emission. The gamma-ray emission from the compound nucleus can be calculated within the framework of the exciton model. The code is capable of reading in particle transmission coefficients calculated by separate spherical or coupled-channel optical model code. In this evaluation, the OPTMAN code /6/ was employed for neutrons, while the ECIS code /7/ was adopted for charged particles. 2. Optical model & parameters Neutrons: Model: The coupled-channel method based on the soft-rotor model was adopted. The Hamiltonian parameters were identical to those reported in ref /8/. Note, deformation parameters were slightly changed from the original values. OMP : Coupled-channel optical potential /9/ was applied. The original parameters were slightly modified to give precise reaction cross sections. The optical potential parameters used in evaluation are listed as follows. ------------------------------------------------------------ - Real-volume term VR0= -3.79E+1 MeV VR1= 2.70E-2 MeV VR2= 1.20E-4 MeV VR3= 3.50E-7 MeV VRLA= 9.49E+1 MeV ALAVR= 4.34E-3 r= 1.21E+0 a= 6.50E-1 - Imaginary-surface term WDBW= 1.30E+1 MeV WDWID= 1.50E+1 MeV ALAWD= 1.40E-2 r= 1.21E+0 a= 6.00E-1 - Imaginary-volume term WCBW= 1.70E+1 MeV WCWID= 9.95E+1 MeV r= 1.21E+0 a= 6.00E-1 - Spin-orbit term VS= 6.54E+0 MeV ALASO= 5.00E-3 WSBW= -3.10E+0 MeV WSWID= 1.60E+2 MeV r= 1.04E+0 a= 5.90E-1 - Isospin coefficients CISO= 2.43E+1 WCISO= 1.80E+1 CCOUL= 9.00E-1 ------------------------------------------------------------ Protons: Model: Spherical OMP : Koning and Delaroche /10/ Deuterons: Model: Spherical OMP : Bojowald et al. /11/ Tritons: Mode: Spherical OMP : Becchetti and Greenlees /12/ He-3: Model: Spherical OMP : Becchetti and Greenlees /12/ Alphas: Model: Spherical OMP : A simplified folding model potential /13/ (The nucleon OMP was taken from Ref./9/.) 3. Level scheme of Cd-106 ------------------------------------ No. Ex(MeV) J PI CC ------------------------------------ 0 0.00000 0 + * 1 0.63264 2 + * 2 1.49378 4 + 3 1.71653 2 + 4 1.79525 0 + 5 2.10453 4 + 6 2.14406 0 + 7 2.25220 4 + 8 2.25400 3 + 9 2.30492 4 + 10 2.33056 5 + 11 2.33855 4 + 12 2.34755 2 + 13 2.37062 2 + 14 2.37850 3 - * 15 2.46842 4 + 16 2.48572 2 + 17 2.49166 6 + ------------------------------------ Levels above 2.50166 MeV are assumed to be continuous. 4. Level density parameters Energy-dependent parameters of Mengoni-Nakajima /14/ were used ---------------------------------------------------------- Nuclei a* Pair Esh T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV ---------------------------------------------------------- Cd-107 15.000 1.160 0.354 0.718 -1.112 7.146 0.999 Cd-106 13.484 2.331 -0.596 0.872 -0.570 9.864 2.492 Cd-105 14.058 1.171 -1.067 0.896 -2.152 9.326 1.182 Cd-104 13.269 2.353 -2.181 0.913 0.018 9.396 2.435 Ag-106 13.429 0.000 1.253 0.756 -2.357 6.276 0.809 Ag-105 12.801 1.171 0.747 0.882 -2.136 9.235 1.757 Ag-104 13.216 0.000 -0.148 0.884 -3.146 7.874 0.270 Pd-104 13.269 2.353 1.161 0.810 -0.541 9.540 2.245 Pd-103 13.844 1.182 0.655 0.767 -1.277 7.616 1.069 Pd-102 13.053 2.376 -0.374 0.871 -0.389 9.710 2.480 ---------------------------------------------------------- 5. Gamma-ray strength functions M1, E2: Standard Lorentzian (SLO) E1 : Generalized Lorentzian (GLO) /15/ 6. Preequilibrium process Preequilibrium is on for n, p, d, t, He-3, and alpha. Preequilibrium capture is on. References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Bollinger, L.M. and Thomas, G.E.: Phys. Rev., 171,1293(1968). 3) Musgrove, A.R. de L., et al.: J. Phsics pt G, 4, 771 (1978). 4) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007). 5) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999) [in Japanese]. 6) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005). 7) J.Raynal, CEA Saclay report, CEA-N-2772 (1994). 8) S.Kunieda et al., J. Nucl. Sci. Technol. 46, 914 (2009). 9) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 10) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 11) Bojowald et al., Phys. Rev. C 38, 1153 (1988). 12) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization Phenomena in Nuclear Reactions," p.682, The University of Wisconsin Press (1971). 13) D.G.Madland, NEANDC-245 (1988), p. 103. 14) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994). 15) M.Brink, Ph.D thesis, Oxford University, 1955.