58-Ce-141

 58-Ce-141 JAEA       EVAL-FEB10 S.Kunieda, A.Ichihara, K.Shibata+
                      DIST-MAY10                       20100223   
----JENDL-4.0         MATERIAL 5840                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
10-02 Re-evaluation was performed for JENDL-4                     
      (compiled by S. Kunieda).                                   
                                                                  
MF= 1 General information                                         
                                                                  
  MT=451 Descriptive data and directory                           
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
                                                                  
  MT=151 Resolved and unresolved resonance parameters             
                                                                  
    - Resolved resonance region (MLBW formula): below 40 eV       
        For JENDL3.3, experimental data measured by Anufriev et   
      al./1/ for 6 resonances below 335 eV were used.             
      Resonance energies, neutron and radiation widths obtained   
      by Anufriev et al. were adopted.  Total spin J was          
      determined with a random number method.  Finally, a negative
      resonance was added so as to reproduce the thermal capture  
      cross section given by Mughabghab et al./2/                 
        For JENDL-4.0, the neutron width of 7.4-eV resonance was  
      modified. That of JENDL-3.3 was 10 times larger than        
      reported value.  Total spin J of each resonance was         
      re-evaluated. Neutron width of -5.0-eV resonance was        
      adjusted to reproduce the capture cross section of 29+-3 b  
      /3/. Upper boundary of the resolved resonance region was    
      set to 40 eV instead of 350 eV of JENDL-3.3, because level- 
      missing was seen above this energy.                         
                                                                  
    - Unresolved resonance region: 40 eV - 200 keV                
      The parameters were obtained by fitting to the total and    
      capture cross sections calculated by the POD code /4/.      
      The ASREP code /5/ was employed in this evaluation.         
      The unresolved parameters should be used only for           
      self-shielding calculation.                                 
                                                                  
   Thermal cross sections & resonance integrals at 300 K          
    ----------------------------------------------------------    
                     0.0253 eV           res. integ. (*)          
                      (barns)              (barns)                
    ----------------------------------------------------------    
     Total          3.23139E+01                                   
     Elastic        3.28994E+00                                   
     n,gamma        2.90240E+01           1.48336E+02             
    ----------------------------------------------------------    
    (*) Integrated from 0.5 eV to 10 MeV.                         
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
                                                                  
  MT=  1 Total cross section                                      
    Sum of partial cross sections.                                
                                                                  
  MT=  2 Elastic scattering cross section                         
    The OPTMAN /6/ & POD calculations /4/.                        
                                                                  
  MT=  3 Non-elastic cross section                                
    Sum of partial non-elastic cross sections.                    
                                                                  
  MT=  4,51-91 (n,n') cross section                               
    The OPTMAN /6/ & POD calculations /4/.                        
                                                                  
  MT= 16 (n,2n) cross section                                     
  MT= 17 (n,3n) cross section                                     
  MT= 22 (n,na) cross section                                     
  MT= 28 (n,np) cross section                                     
  MT= 32 (n,nd) cross section                                     
  MT=102 Capture cross section                                    
  MT=103 (n,p) cross section                                      
  MT=104 (n,d) cross section                                      
  MT=105 (n,t) cross section                                      
  MT=106 (n,He3) cross section                                    
  MT=107 (n,a) cross section                                      
    Calculated by the POD code /4/.                               
                                                                  
  MT=203 (n,xp) cross section                                     
    Sum of (n,np) and (n,p)                                       
                                                                  
  MT=204 (n,xd) cross section                                     
    Sum of (n,nd) and (n,d)                                       
                                                                  
  MT=205 (n,xt) cross section                                     
  MT=206 (n,xHe3) cross section                                   
    Calculated by the POD code /4/.                               
                                                                  
  MT=207 (n,xa) cross section                                     
    Sum of (n,na) and (n,a)                                       
                                                                  
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
                                                                  
  MT=  2 Elastic scattering                                       
    The OPTMAN /6/ & POD calculations /4/.                        
                                                                  
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
                                                                  
  MT= 16 (n,2n) reaction                                          
  MT= 17 (n,3n) reaction                                          
  MT= 22 (n,na) reaction                                          
  MT= 28 (n,np) reaction                                          
  MT= 32 (n,nd) reaction                                          
    Neutron spectra calculated by the POD code /4/.               
                                                                  
  MT= 51-90 (n,n') reaction                                       
    Neutron angular distributions calculated by                   
    OPTMAN /6/ & POD /4/.                                         
                                                                  
  MT= 91 (n,n') reaction                                          
    Neutron spectra calculated by the POD code /4/.               
                                                                  
  MT= 203 (n,xp) reaction                                         
  MT= 204 (n,xd) reaction                                         
  MT= 205 (n,xt) reaction                                         
  MT= 206 (n,xHe3) reaction                                       
  MT= 207 (n,xa) reaction                                         
    Light-ion spectra calculated by the POD code /6/.             
                                                                  
                                                                  
MF=12 Gamma-ray multiplicities                                    
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /4/.                               
                                                                  
                                                                  
MF=14 Gamma-ray angular distributions                             
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Assumed to be isotropic.                                      
                                                                  
                                                                  
MF=15 Gamma-ray spectra                                           
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /4/.                               
                                                                  
                                                                  
                                                        
                                                                  
***************************************************************   
*        Nuclear Model Calculations with POD Code /4/     *       
***************************************************************   
1. Theoretical models                                             
 The POD code is based on the spherical optical model, the        
distorted-wave Born approximaiton (DWBA), one-component exciton   
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-    
tical model.  With the preequilibrium model, semi-empirical       
pickup and knockout process can be taken into account for         
composite-particle emission.  The gamma-ray emission from the     
compound nucleus can be calculated within the framework of the    
exciton model.  The code is capable of reading in particle        
transmission coefficients calculated by separate spherical or     
coupled-channel optical model code. In this evaluation, the OPTMAN
code /6/ was employed for neutrons, while the ECIS code           
/7/ was adopted for charged particles.                            
                                                                  
2. Optical model & parameters                                     
  Neutrons:                                                       
    Model: Coupled-channel model based on the rigid-rotor model   
    OMP  : Based on the Coupled-channel optical potential /8/     
           The original Parameters were slightly modified as      
           listed below to reproduce experimental total cross     
           sections measured by Camarda et al /9/.                
     ------------------------------------------------------------ 
     - Real-volume term                                           
       VR0= -3.85E+1 MeV   VR1=   2.70E-2 MeV   VR2=  1.20E-4 MeV 
       VR3=  3.50E-7 MeV   VRLA=  9.49E+1 MeV   ALAVR=  4.22E-3   
       r= 1.21E+0     a=  6.30E-1                                 
     - Imaginary-surface term                                     
       WDBW=  1.30E+1 MeV   WDWID=  1.40E+1 MeV   ALAWD=  1.40E-2 
       r= 1.21E+0     a=  6.75E-1                                 
     - Imaginary-volume term                                      
       WCBW=  1.70E+1 MeV   WCWID=  1.05E+2 MeV                   
       r= 1.21E+0     a=  6.75E-1                                 
     - Spin-orbit term                                            
       VS=    6.34E+0 MeV   ALASO=  5.00E-3                       
       WSBW= -3.10E+0 MeV   WSWID=  1.60E+2 MeV                   
       r= 1.06E+0     a=  5.90E-1                                 
     - Isospin coefficients                                       
       CISO=   2.43E+1   WCISO=  1.80E+1   CCOUL=  9.00E-1        
     - Deformation parameter                                      
       Beta2=  -1.00E-1                                           
     ------------------------------------------------------------ 
  Protons:                                                        
    Model: Spherical                                              
    OMP  : Koning and Delaroche /10/                              
  Deuterons:                                                      
    Model: Spherical                                              
    OMP  : Bojowald et al. /11/                                   
  Tritons:                                                        
    Mode: Spherical                                               
    OMP : Becchetti and Greenlees /12/                            
  He-3:                                                           
    Model: Spherical                                              
    OMP  : Becchetti and Greenlees /12/                           
  Alphas:                                                         
    Model: Spherical                                              
    OMP  : A simplified folding model potential /13/              
           (The nucleon OMP was taken form Ref./8/.)              
                                                                  
3. Level scheme of Ce-141                                         
  ------------------------------------                            
   No.   Ex(MeV)     J  PI      CC                                
  ------------------------------------                            
    0    0.00000    7/2  -       *                                
    1    0.66206    3/2  -                                        
    2    1.13700    1/2  -                                        
    3    1.35452    9/2  -       *                                
    4    1.36870   13/2  +                                        
    5    1.37800    9/2  -                                        
    6    1.49700    5/2  -                                        
    7    1.62650    3/2  +                                        
    8    1.69330   11/2  -                                        
    9    1.73900    7/2  -                                        
   10    1.78500    1/2  +                                        
   11    1.80870    3/2  -                                        
   12    1.81200    5/2  -                                        
   13    1.91500    9/2  -                                        
   14    1.94200    1/2  +                                        
  ------------------------------------                            
  Levels above  1.95200 MeV are assumed to be continuous.         
                                                                  
                                                                  
4. Level density parameters                                       
 Energy-dependent parameters of Mengoni-Nakajima /14/ were used   
  ----------------------------------------------------------      
  Nuclei    a*    Pair    Esh     T     E0    Ematch Elv_max      
          1/MeV   MeV     MeV    MeV    MeV    MeV    MeV         
  ----------------------------------------------------------      
  Ce-142  17.282  2.014 -0.311  0.610  0.530  6.671  2.365        
  Ce-141  17.686  1.011 -1.072  0.493  0.659  3.613  1.942        
  Ce-140  17.074  2.028 -1.942  0.640  0.903  6.384  2.481        
  Ce-139  17.607  1.018 -1.120  0.492  0.694  3.570  1.985        
  La-141  16.464  1.011 -0.489  0.665 -0.737  6.277  0.929        
  La-140  17.665  0.000 -1.411  0.615 -1.257  4.391  0.602        
  La-139  16.263  1.018 -2.218  0.812 -1.629  8.151  1.257        
  Ba-139  20.276  1.018 -2.224  0.511  0.373  4.093  2.038        
  Ba-138  16.830  2.043 -3.130  0.710  0.829  6.866  3.155        
  Ba-137  18.884  1.025 -2.239  0.463  0.926  3.110  1.908        
  ----------------------------------------------------------      
                                                                  
5. Gamma-ray strength functions                                   
   M1, E2: Standard Lorentzian (SLO)                              
   E1    : Generalized Lorentzian (GLO) /15/                      
                                                                  
6. Preequilibrium process                                         
   Preequilibrium is on for n, p, d, t, He-3, and alpha.          
   Preequilibrium capture is on.                                  
                                                                  
                                                                  
References                                                        
 1) B.A.Anufriev et al. : 1980 Kiev, Vol.2, p.136 (1980).         
 2) S.F.Mughabghab et al.: "Neutron Cross Sections, Vol. I,       
    Part A," Academic Press (1981).                               
 3) P.M.Lantz et al.: Nucl. Sci. Eng., 20, 302 (1964).            
 4) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).            
 5) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999)               
    [in Japanese].                                                
 6) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).       
 7) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).               
 8) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).      
 9) Camarda et al., Phys. Rev. C 29, 2106 (1984).                 
10) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).      
11) Bojowald et al., Phys. Rev. C 38, 1153 (1988).                
12) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization               
    Phenomena in Nuclear Reactions," p.682, The University        
    of Wisconsin Press (1971).                                    
13) D.G.Madland, NEANDC-245 (1988), p. 103.                       
14) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151         
     (1994).                                                      
15) M.Brink, Ph.D thesis, Oxford University, 1955.