49-In-113

 49-In-113 JAEA       EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+
                      DIST-MAY10                       20100316   
----JENDL-4.0         MATERIAL 4925                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
09-11 Re-evaluation was performed for JENDL-4.0                   
10-03 Compiled by S.Kunieda                                       
                                                                  
MF= 1 General information                                         
                                                                  
  MT=451 Descriptive data and directory                           
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
                                                                  
  MT=151 Resolved and unresolved resonance parameters             
                                                                  
    - Resolved resonance region (MLBW formula): below 830 eV      
        In JENDL-3.3, resonance parameters were based on          
      Mughabghab et al./1/  Total spin j of some resonances       
      was tentatively estimated with a random number method.      
      Neutron orbital angular momentum l of some resonances was   
      estimated with a method of Bollinger and Thomas/2/.         
      Averaged radiation width and scattering radius were taken   
      from Mughabghab et al.                                      
        In JENDL-4, the data for 25 - 467 eV were replaced with   
      the ones obtained by Frankle et al./3/  A value of 75       
      meV were assumed for the radiation with in this range. The  
      total spin J for 25.0, 32.23, 70.3 and 91.6 eV were         
      determiend by considering the work of Georgiev et al./4/    
      The remaining J values were estimated by a random number    
      method.  The resonances at 276.8 and 304.3-eV given in      
      JENDL-3.3 were removed.                                     
                                                                  
    - Unresolved resonance region: 830 eV - 300 keV               
        The parameters were obtained by fitting to the total and  
      capture cross sections calculated by the POD code /5/.      
      The ASREP code /6/ was employed in this evaluation.         
      The unresolved parameters should be used only for           
      self-shielding calculation.                                 
                                                                  
   Thermal cross sections & resonance integrals at 300 K          
    ----------------------------------------------------------    
                     0.0253 eV           res. integ. (*)          
                      (barns)              (barns)                
    ----------------------------------------------------------    
     Total          1.57853E+01                                   
     Elastic        3.69864E+00                                   
     n,gamma        1.20866E+01           3.25355E+02             
    ----------------------------------------------------------    
    (*) Integrated from 0.5 eV to 10 MeV.                         
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
                                                                  
  MT=  1 Total cross section                                      
    Sum of partial cross sections.                                
                                                                  
  MT=  2 Elastic scattering cross section                         
    The OPTMAN /7/ & POD /5/ calculations.                        
                                                                  
  MT=  3 Non-elastic cross section                                
    Sum of partial non-elastic cross sections.                    
                                                                  
  MT=  4,51-91 (n,n') cross section                               
    The OPTMAN /7/ & POD /5/ calculations.                        
                                                                  
  MT= 16 (n,2n) cross section                                     
  MT= 17 (n,3n) cross section                                     
  MT= 22 (n,na) cross section                                     
  MT= 28 (n,np) cross section                                     
  MT= 32 (n,nd) cross section                                     
    Calculated by the POD code /5/.                               
                                                                  
  MT=102 Capture cross section                                    
    Calculated by the POD code /5/. The value of gamma-ray        
    strength function was set to the recomendation value by       
    Mughabghab /8/.                                               
                                                                  
  MT=103 (n,p) cross section                                      
  MT=104 (n,d) cross section                                      
  MT=105 (n,t) cross section                                      
  MT=106 (n,He3) cross section                                    
  MT=107 (n,a) cross section                                      
    Calculated by the POD code /5/.                               
                                                                  
  MT=203 (n,xp) cross section                                     
    Sum of (n,np) and (n,p)                                       
                                                                  
  MT=204 (n,xd) cross section                                     
    Sum of (n,nd) and (n,d)                                       
                                                                  
  MT=205 (n,xt) cross section                                     
  MT=206 (n,xHe3) cross section                                   
    Calculated by the POD code /5/.                               
                                                                  
  MT=207 (n,xa) cross section                                     
    Sum of (n,na) and (n,a)                                       
                                                                  
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
                                                                  
  MT=  2 Elastic scattering                                       
    The OPTMAN /7/ & POD /5/ calculations.                        
                                                                  
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
                                                                  
  MT= 16 (n,2n) reaction                                          
  MT= 17 (n,3n) reaction                                          
  MT= 22 (n,na) reaction                                          
  MT= 28 (n,np) reaction                                          
  MT= 32 (n,nd) reaction                                          
    Neutron spectra calculated by the POD code /5/.               
                                                                  
  MT= 51-90 (n,n') reaction                                       
    Neutron angular distributions calculated by                   
    OPTMAN /7/ & POD /5/.                                         
                                                                  
  MT= 91 (n,n') reaction                                          
    Neutron spectra calculated by the POD code /5/.               
                                                                  
  MT= 203 (n,xp) reaction                                         
  MT= 204 (n,xd) reaction                                         
  MT= 205 (n,xt) reaction                                         
  MT= 206 (n,xHe3) reaction                                       
  MT= 207 (n,xa) reaction                                         
    Light-ion spectra calculated by the POD code /6/.             
                                                                  
                                                                  
MF=12 Gamma-ray multiplicities                                    
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /5/.                               
                                                                  
                                                                  
MF=14 Gamma-ray angular distributions                             
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Assumed to be isotropic.                                      
                                                                  
                                                                  
MF=15 Gamma-ray spectra                                           
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /5/.                               
                                                                  
                                                                  
                                                        
                                                                  
***************************************************************   
*        Nuclear Model Calculations with POD Code /5/     *       
***************************************************************   
1. Theoretical models                                             
 The POD code is based on the spherical optical model, the        
distorted-wave Born approximaiton (DWBA), one-component exciton   
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-    
tical model.  With the preequilibrium model, semi-empirical       
pickup and knockout process can be taken into account for         
composite-particle emission.  The gamma-ray emission from the     
compound nucleus can be calculated within the framework of the    
exciton model.  The code is capable of reading in particle        
transmission coefficients calculated by separate spherical or     
coupled-channel optical model code. In this evaluation, the OPTMAN
code /7/ was employed for neutrons, while the ECIS code           
/9/ was adopted for charged particles.                            
                                                                  
2. Optical model & parameters                                     
  Neutrons:                                                       
    Model: Coupled-channel model based on the rigid-rotor model   
    OMP  : Based on the Coupled-channel optical potential /10/    
           The original Parameters were slightly modified as      
           listed below to give a precise reaction cross sections.
     ------------------------------------------------------------ 
     - Real-volume term                                           
       VR0= -3.80E+1 MeV   VR1=   2.70E-2 MeV   VR2=  1.20E-4 MeV 
       VR3=  3.50E-7 MeV   VRLA=  9.49E+1 MeV   ALAVR=  4.30E-3   
       r= 1.21E+0     a=  6.54E-1                                 
     - Imaginary-surface term                                     
       WDBW=  1.35E+1 MeV   WDWID=  1.40E+1 MeV   ALAWD=  1.40E-2 
       r= 1.21E+0     a=  6.54E-1                                 
     - Imaginary-volume term                                      
       WCBW=  1.70E+1 MeV   WCWID=  1.01E+2 MeV                   
       r= 1.21E+0     a=  6.54E-1                                 
     - Spin-orbit term                                            
       VS=    6.26E+0 MeV   ALASO=  5.00E-3                       
       WSBW= -3.10E+0 MeV   WSWID=  1.60E+2 MeV                   
       r= 1.05E+0     a=  5.90E-1                                 
     - Isospin coefficients                                       
       CISO=   2.43E+1   WCISO=  1.80E+1   CCOUL=  9.00E-1        
     - Deformation parameter                                      
       Beta2=  -1.20E-1                                           
     ------------------------------------------------------------ 
  Protons:                                                        
    Model: Spherical                                              
    OMP  : Koning and Delaroche /11/                              
  Deuterons:                                                      
    Model: Spherical                                              
    OMP  : Bojowald et al. /12/                                   
  Tritons:                                                        
    Mode: Spherical                                               
    OMP : Becchetti and Greenlees /13/                            
  He-3:                                                           
    Model: Spherical                                              
    OMP  : Becchetti and Greenlees /13/                           
  Alphas:                                                         
    Model: Spherical                                              
    OMP  : A simplified folding model potential /14/              
           (The nucleon OMP was taken from Ref./10/.)             
                                                                  
3. Level scheme of In-113                                         
  ------------------------------------                            
   No.   Ex(MeV)     J  PI      CC                                
  ------------------------------------                            
    0    0.00000    9/2  +       *                                
    1    0.39169    1/2  -                                        
    2    0.64676    3/2  -                                        
    3    1.02425    5/2  +                                        
    4    1.02971    3/2  +                                        
    5    1.06416    3/2  +                                        
    6    1.10636    5/2  -                                        
    7    1.13146    5/2  +                                        
    8    1.17310   11/2  +       *                                
    9    1.19107    7/2  +                                        
  ------------------------------------                            
  Levels above  1.20107 MeV are assumed to be continuous.         
                                                                  
                                                                  
4. Level density parameters                                       
 Energy-dependent parameters of Mengoni-Nakajima /15/ were used   
  ----------------------------------------------------------      
  Nuclei    a*    Pair    Esh     T     E0    Ematch Elv_max      
          1/MeV   MeV     MeV    MeV    MeV    MeV    MeV         
  ----------------------------------------------------------      
  In-114  14.275  0.000  2.256  0.601 -1.368  4.328  0.642        
  In-113  16.000  1.129  2.058  0.584 -0.576  5.783  1.191        
  In-112  14.064  0.000  1.668  0.779 -3.108  7.332  0.676        
  In-111  13.420  1.139  1.285  0.824 -2.020  8.763  1.935        
  Cd-113  14.918  1.129  2.940  0.622 -0.905  6.375  1.352        
  Cd-112  14.435  2.268  2.419  0.735 -0.781  9.301  2.649        
  Cd-111  14.779  1.139  2.384  0.681 -1.366  7.239  1.341        
  Ag-111  13.420  1.139  3.581  0.725 -1.706  7.873  1.277        
  Ag-110  14.571  0.000  3.382  0.622 -2.061  5.263  0.337        
  Ag-109  13.214  1.149  2.966  0.745 -1.615  7.875  0.870        
  ----------------------------------------------------------      
  The value of a* for In-113 was slightly changed from the        
  original value.                                                 
                                                                  
5. Gamma-ray strength functions                                   
   M1, E2: Standard Lorentzian (SLO)                              
   E1    : Generalized Lorentzian (GLO) /16/                      
                                                                  
6. Preequilibrium process                                         
   Preequilibrium is on for n, p, d, t, He-3, and alpha.          
   Preequilibrium capture is on.                                  
                                                                  
                                                                  
References                                                        
 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,     
    Part A", Academic Press (1981).                               
 2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).    
 3) Frankle, C.M. et al.: Phys. Rev., C48, 1601 (1993).           
 4) Georgiev, G.P. et al.: JINR-E3-95-307, p170 (1995).           
 5) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).            
 6) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999)               
    [in Japanese].                                                
 7) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).       
 8) S.F.Mughabghab, "Atlas of Neutron Resonances",                
    Elsevier (2006).                                              
 9) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).               
10) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).      
11) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).      
12) Bojowald et al., Phys. Rev. C 38, 1153 (1988).                
13) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization               
    Phenomena in Nuclear Reactions," p.682, The University        
    of Wisconsin Press (1971).                                    
14) D.G.Madland, NEANDC-245 (1988), p. 103.                       
15) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151         
     (1994).                                                      
16) M.Brink, Ph.D thesis, Oxford University, 1955.