91-Pa-232 JAEA+ EVAL-FEB10 O.Iwamoto, T.Nakagawa, et al. DIST-MAY10 20100323 ----JENDL-4.0 MATERIAL 9134 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 03-02 Resolved resonance parameters and cross sections below 30 keV were updated. 07-08 Resolved resonance parameters were modified. 07-10 Theoretical calculation was carried out with CCONE code. Data were compiled as JENDL/AC-2008/1/. 09-04 Numbers of prompt and delayed neutrons were revised. 10-02 Data of prompt gamma rays due to fission were given. 10-03 Covariance data were given. MF=1 General information MT=452 Number of Neutrons per fission Sum of MT's=455 and 456. MT=455 Delayed neutron data Determined from nu-d of the following three fissioning nuclides and partial fission cross sections calculated with CCONE code/2/. Pa-233 = 0.01577 Pa-232 = 0.01083 Pa-231 = 0.007461 They are averages of systematics by Tuttle/3/, Benedetti et al./4/ and Waldo et al./5/ MT=456 Number of prompt neutrons per fission Estimated from Ohsawa's systematics/6/. nup = 2.0860 + 0.13668*E(MeV) MF=2 Resonance parameters MT=151 Resonance parameters Resolved resonance parameters (1.0E-5 to 21 eV, MLBW) Parameters evaluated by Bakhanovich et al./7/ were adopted after modifying parameters of a negative resonance and adding one at -0.3 eV so as to reproduce thermal cross sections. The data of Danon et al./8/ were used for the evaluation by Bakhanovich et al. Thermal cross sections to be reproduced: capture = 589+-56 /9,10/ fission = 1488+-14 /8,11/ Unresolved resonance parameters (21 eV - 10 keV) Cross sections were reproduced with average resonance parameters determined by ASREP code/12/. These parameters are used only for self-shielding effects. Thermal cross sections and resonance integrals (at 300K) ------------------------------------------------------- 0.0253 eV reson. integ.(*) (barns) (barns) ------------------------------------------------------- total 2100.3 elastic 23.91 fission 1487.4 931 capture 589.0 165 ------------------------------------------------------- (*) In the energy range from 0.5 eV to 10 MeV. MF=3 Neutron cross sections Cross sections above the resolved resonance region were calculated with CCONE code/2/. MT= 1 Total cross section The cross section was calculated with CC OMP of Soukhovitskii et al./13/. MT=18 Fission cross section The experimental data of Danon et al./8/ and the simulated (n,f) cross sections of Britt and Wilhelmy/14/ were used to determine the parameters in the CCONE calculation. MF= 4 Angular distributions of secondary neutrons MT=2 Elastic scattering Calculated with CCONE code/2/. MT=18 Fission Isotropic distributions in the laboratory system were assumed. MF= 5 Energy distributions of secondary neutrons MT=18 Prompt neutrons Calculated with CCONE code/2/. MF= 6 Energy-angle distributions Calculated with CCONE code/2/. Distributions from fission (MT=18) are not included. MF=12 Photon production multiplicities MT=18 Fission Calculated from the total energy released by the prompt gamma-rays due to fission which was estimated from its systematics, and the average energy of gamma-rays. MF=14 Photon angular distributions MT=18 Fission Isotoropic distributions were assumed. MF=15 Continuous photon energy spectra MT=18 Fission Experimental data measured by Verbinski et al./15/ for U-235 thermal fission were adopted. MF=31 Covariances of average number of neutrons per fission MT=452 Number of neutrons per fission Sum of covariances for MT=455 and MT=456. MT=455 Error of 15% was assumed. MT=456 Covariance was obtained by fitting a linear function to the data at 0.0 and 5.0 MeV with an uncertainty of 5%. MF=32 Covariances of resonance parameters MT=151 Resolved resonance parameterss Format of LCOMP=0 was adopted. Uncertainties of parameters were assumed as follows: Resonance energy 0.1 % Neutron width 10 % Capture width 50 % Fission width 20 % They were further modified by considering experimental data of the fission and capture cross sections at the thermal neutron energy. MF=33 Covariances of neutron cross sections Covariances were given to all the cross sections by using KALMAN code/16/ and the covariances of model parameters used in the cross-section calculations. Covariances of the total, elastic-scattering, fission and capture cross sections were determined by considering the experimental data (see MF=3). In the resolved resonance region, the following standard deviations were added to the contributions from resonance parameters: Total 2 b Elastic scattering 20 % MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Covariances were given only to P1 components. MF=35 Covariances for Energy Distributions MT=18 Fission spectra Estimated with CCONE and KALMAN codes. ***************************************************************** Calculation with CCONE code ***************************************************************** Models and parameters used in the CCONE/2/ calculation 1) Coupled channel optical model Levels in the rotational band were included. Optical model potential and coupled levels are shown in Table 1. 2) Two-component exciton model/17/ * Global parametrization of Koning-Duijvestijn/18/ was used. * Gamma emission channel/19/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/20/ was included. * Neutron, gamma and fission decay channel were included. * Transmission coefficients of neutrons were taken from coupled channel calculation in Table 1. * The level scheme of the target is shown in Table 2. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 3. * Fission channel: Double humped fission barriers were assumed. Fission barrier penetrabilities were calculated with Hill-Wheler formula/21/. Fission barrier parameters were shown in Table 4. Transition state model was used and continuum levels are assumed above the saddles. The level density parameters for inner and outer saddles are shown in Tables 5 and 6, respectively. * Gamma-ray strength function of Kopecky et al/22/,/23/ was used. The prameters are shown in Table 7. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Coupled channel calculation -------------------------------------------------- * rigid rotor model was applied * coupled levels = 0,1,2,3 (see Table 2) * optical potential parameters /13/ Volume: V_0 = 49.97 MeV lambda_HF = 0.01004 1/MeV C_viso = 15.9 MeV A_v = 12.04 MeV B_v = 81.36 MeV E_a = 385 MeV r_v = 1.2568 fm a_v = 0.633 fm Surface: W_0 = 17.2 MeV B_s = 11.19 MeV C_s = 0.01361 1/MeV C_wiso = 23.5 MeV r_s = 1.1803 fm a_s = 0.601 fm Spin-orbit: V_so = 5.75 MeV lambda_so = 0.005 1/MeV W_so = -3.1 MeV B_so = 160 MeV r_so = 1.1214 fm a_so = 0.59 fm Coulomb: C_coul = 1.3 r_c = 1.2452 fm a_c = 0.545 fm Deformation: beta_2 = 0.213 beta_4 = 0.066 beta_6 = 0.0015 * Calculated strength function S0= 0.90e-4 S1= 1.92e-4 R'= 9.70 fm (En=1 keV) -------------------------------------------------- Table 2. Level Scheme of Pa-232 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 2 - * 1 0.06000 3 - * ------------------- *) Coupled levels in CC calculation Table 3. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pa-233 16.7739 0.7861 3.1759 0.4375 -1.3104 3.5616 Pa-232 17.9699 0.0000 2.9784 0.2779 -0.6740 1.0000 Pa-231 17.9034 0.7895 3.1164 0.4176 -1.2470 3.5007 Pa-230 17.8368 0.0000 2.9470 0.2794 -0.6728 1.0000 Pa-229 17.7702 0.7930 3.0707 0.3881 -0.8689 3.0597 -------------------------------------------------------- Table 4. Fission barrier parameters ---------------------------------------- Nuclide V_A hw_A V_B hw_B MeV MeV MeV MeV ---------------------------------------- Pa-233 5.800 0.800 6.000 0.520 Pa-232 5.800 0.800 6.180 0.400 Pa-231 6.000 0.800 5.750 0.520 Pa-230 5.800 0.800 6.180 0.400 Pa-229 6.000 0.800 5.800 0.520 ---------------------------------------- Table 5. Level density above inner saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pa-233 21.6437 0.9172 2.6000 0.3187 -1.4511 2.9172 Pa-232 20.6654 0.0000 2.6000 0.3415 -2.6081 2.2000 Pa-231 20.5889 0.9211 2.6000 0.3276 -1.4734 2.9211 Pa-230 20.5123 0.0000 2.6000 0.3428 -2.6080 2.2000 Pa-229 20.4357 0.9251 2.6000 0.3435 -1.6829 3.1251 -------------------------------------------------------- Table 6. Level density above outer saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pa-233 21.6437 0.9172 -0.0400 0.3439 -0.6013 2.7172 Pa-232 20.6654 0.0000 -0.0800 0.4050 -2.1087 2.5000 Pa-231 20.5889 0.9211 -0.1200 0.3706 -0.7702 2.9211 Pa-230 20.5123 0.0000 -0.1600 0.3867 -1.8562 2.2000 Pa-229 20.4357 0.9251 -0.2000 0.3880 -0.9302 3.1251 -------------------------------------------------------- Table 7. Gamma-ray strength function for Pa-233 -------------------------------------------------------- K0 = 0.800 E0 = 4.500 (MeV) * E1: ER = 11.03 (MeV) EG = 2.71 (MeV) SIG = 302.00 (mb) ER = 13.87 (MeV) EG = 4.77 (MeV) SIG = 449.00 (mb) * M1: ER = 6.66 (MeV) EG = 4.00 (MeV) SIG = 1.82 (mb) * E2: ER = 10.24 (MeV) EG = 3.31 (MeV) SIG = 6.38 (mb) -------------------------------------------------------- References 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009). 2) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 3) R.J.Tuttle: INDC(NDS)-107/G+Special, p.29 (1979). 4) G.Benedetti et al.: Nucl. Sci. Eng., 80, 379 (1982). 5) R.Waldo et al.: Phys. Rev., C23, 1113 (1981). 6) T.Ohsawa: J. Nucl. Radiochem. Sci., 9, 19 (2008). 7) L.A.Bakhanovich, G.B.Morogovskij: INDC(CCP)-426, p.113 (2001). 8) Y.Danon et al.: Nucl. Sci. Eng., 124, 482 (1996). 9) E.M.Gryntakis: thesis (1976). 10) M.Andreev et al.: 2001 Tsukuba, Vol. 1, p.280 (2001). 11) E.F.Fomushkin et al.: 1997 Trieste, Vol.2, 1353 (1997). 12) Y.Kikuchi et al.: JAERI-Data/Code 99-025 (1999) in Japanese. 13) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005). 14) H.C.Britt, J.B.Wilhelmy: Nucl. Sci. Eng., 72, 222 (1979). 15) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973). 16) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 17) C.Kalbach: Phys. Rev. C33, 818 (1986). 18) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 19) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 20) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 21) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953). 22) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 23) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).