59-Pr-143 JNDC       EVAL-MAR90 JNDC FP NUCLEAR DATA W.G.        
                      DIST-MAY10                       20091214   
----JENDL-4.0         MATERIAL 5931                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
   Resonance parameters in JENDL-3.3 were revised for JENDL-4.    
   JENDL-3.2 data were automatically transformed to JENDL-3.3.    
    Interpolation of spectra: 22 (unit base interpolation)        
    (3,251) deleted, T-matrix of (4,2) deleted, and others.       
90-03 New evaluation for JENDL-3 was completed by JNDC FPND       
10-03 JENDL-4.0 was made.                                         
      Resoloved resonance parameters were evaluated by T.Nakagawa.
      Unresolved resonance parameters were evaluated by S.Kunieda.
      The LSSF=1 was applied.                                     
      Compiled by S.Kunieda                                       
      *****   modified parts for JENDL-4.0   ******************** 
        (1,451)   Updated.                                        
        (2,151)   Updated.                                        
        (3,1)     Re-calculated from partial cross sections.      
        (3,2)     Calculated from URP in lower energy range.      
        (3,4)     Re-calculated from partial cross sections.      
        (3,102)   Calculated from URP in lower energy range.      
mf = 1  General information                                       
  mt=451 Comments and dictionary                                  
mf = 2  Resonance parameters                                      
  mt=151 Resolved and unresolved resonance parameters             
  Resolved resonance parameters (MLBW; below 500 eV)              
    No resolved resonance parameters for JENDL-3.3                
    For JENDL-4.0, resonance energies and neutron widths were     
    evaluated on the basis of experimental data of Anufriev et    
    al./20/  Average capture width was assumed to be 100 meV.     
    A negative resonance was assumed at -10 eV adjusting its      
    parameters to the capture cross section of 89+-10 b at 0.0253 
    eV/19/. Scattering radius was assumed to be 6.0 fm which      
    was the same as Pr-141.                                       
  Unresolved resonance region : 4 eV - 100 keV                    
    The lower boundary of 4 eV was determined so as to reproduce  
    well the  capture resonance integral of 190+-25 barns/2/.  The
    neutron strength functions, S0, S1 and S2 were calculated with
    optical model code CASTHY/3/.  The observed level spacing was 
    determined to reproduce the capture cross section calculated  
    with CASTHY.  The effective scattering radius was obtained    
    from fitting to the calculated total cross section at 100 keV.
    The radiation width Gg was based on the systematics of        
    measured values for neighboring nuclides.                     
  Typical values of the parameters at 70 keV:                     
    S0 = 2.300e-4, S1 = 1.100e-4, S2 = 1.700e-4, Sg = 5.98e-4,    
    Gg = 0.065 eV, R  = 4.479 fm.                                 
      For JENDL-4.0, the unresolved resonance parameters were     
    re-evaluated by the ASREP /21/ code so as to reproduce the    
    total and capture cross sections given in JENDL3.3 in the     
    energy region from 500 eV to 200 keV. The parameters          
    should be used only for self-shielding calculations.          
     Thermal cross sections & resonance integrals at 300 K        
                       0.0253 eV           res. integ. (*)        
                        (barns)              (barns)              
       Total          9.35757E+01                                 
       Elastic        3.51204E+00                                 
       n,gamma        9.00636E+01           1.57179E+02           
      (*) Integrated from 0.5 eV to 10 MeV.                       
mf = 3  Neutron cross sections                                    
  Below 4 eV, the capture and elastic scattering cross sections   
  were assumed to be in 1/v form and constant, respectively.  The 
  capture cross section at 0.0253 eV was taken from Ref./2/, and  
  the elastic scattering cross section was estimated by assuming  
  r = 4.8 fm.  Unresolved resonance parameters were given in the  
  energy range from 4 eV to 100 keV.                              
  Above 100 keV, the spherical optical and statistical model      
  calculation was performed with CASTHY, by taking account of     
  competing reactions, of which cross sections were calculated    
  with PEGASUS/4/ standing on a preequilibrium and multi-step     
  evaporation model.  The OMP's for neutron given in Table 1 were 
  adopted from Moldauer/5/ since the parameters reproduced well   
  the total cross section measured by Foster and Glasgow/6/.  The 
  OMP's for charged particles are as follows:                     
     proton   = Perey/7/                                          
     alpha    = Huizenga and Igo/8/                               
     deuteron = Lohr and Haeberli/9/                              
     helium-3 and triton = Becchetti and Greenlees/10/            
  Parameters for the composite level density formula of Gilbert   
  and Cameron/11/ were evaluated by Iijima et al./12/  More       
  extensive determination and modification were made in the       
  present work.  Table 2 shows the level density parameters used  
  in the present calculation.  Energy dependence of spin cut-off  
  parameter in the energy range below E-joint is due to Gruppelaar
  mt = 1  Total                                                   
    Spherical optical model calculation was adopted.              
  mt = 2  Elastic scattering                                      
    Calculated as (total - sum of partial cross sections).        
  mt = 4, 51 - 91  Inelastic scattering                           
    Spherical optical and statistical model calculation was       
    adopted. The level scheme was based on Evaluated Nuclear      
    Structure Data File (1987 version)/14/ and Nuclear Data       
           no.      energy(MeV)    spin-parity                    
           gr.       0.0            7/2 +                         
            1        0.0574         5/2 +                         
            2        0.3506         3/2 +                         
            3        0.4904         7/2 +                         
            4        0.7219         5/2 +                         
            5        0.7401         1/2 -                         
            6        0.9378         3/2 +                         
            7        1.0603         5/2 +                         
            8        1.1604         3/2 +                         
            9        1.3820         3/2 +                         
           10        1.3977         1/2 -                         
      Levels above 1.526 MeV were assumed to be overlapping.      
  mt = 102  Capture                                               
    Spherical optical and statistical model calculation with      
    CASTHY was adopted.  Direct and semi-direct capture cross     
    sections were estimated according to the procedure of Benzi   
    and Reffo/16/ and normalized to 1 milli-barn at 14 MeV.       
    The gamma-ray strength function (6.24e-04) was determined from
    the systematics of radiation width (0.065 eV) and the average 
    s-wave resonance level spacing (104 eV) calculated from the   
    level density parameters.                                     
  mt = 16  (n,2n) cross section                                   
  mt = 17  (n,3n) cross section                                   
  mt = 22  (n,n'a) cross section                                  
  mt = 28  (n,n'p) cross section                                  
  mt = 32  (n,n'd) cross section                                  
  mt = 33  (n,n't) cross section                                  
  mt =103  (n,p) cross section                                    
  mt =104  (n,d) cross section                                    
  mt =105  (n,t) cross section                                    
  mt =106  (n,he3) cross section                                  
  mt =107  (n,alpha) cross section                                
    These reaction cross sections were calculated with the        
    preequilibrium and multi-step evaporation model code PEGASUS. 
    The Kalbach's constant k (= 324.5) was estimated by the       
    formula derived from Kikuchi-Kawai's formalism/17/ and level  
    density parameters.                                           
    Finally, the (n,p) and (n,alpha) cross sections were          
    normalized to the following values at 14.5 MeV:               
      (n,p)          5.29  mb (systematics of Forrest/18/)        
      (n,alpha)      2.22  mb (systematics of Forrest)            
  mt = 251  mu-bar                                                
    Calculated with CASTHY.                                       
mf = 4  Angular distributions of secondary neutrons               
  Legendre polynomial coefficients for angular distributions are  
  given in the center-of-mass system for mt=2 and discrete inelas-
  tic levels, and in the laboratory system for mt=91.  They were  
  calculated with CASTHY.  For other reactions, isotropic distri- 
  butions in the laboratory system were assumed.                  
mf = 5  Energy distributions of secondary neutrons                
  Energy distributions of secondary neutrons were calculated with 
  PEGASUS for inelastic scattering to overlapping levels and for  
  other neutron emitting reactions.                               
                DEPTH (MEV)       RADIUS(FM)    DIFFUSENESS(FM)   
         ----------------------   ------------  ---------------   
        V  = 46.0                 R0 = 6.666    A0 = 0.62         
        WS = 7.0                  RS = 6.666    AS = 1.0          
        VSO= 7.0                  RSO= 6.666    ASO= 0.62         
TABLE 2  LEVEL DENSITY PARAMETERS                                 
 NUCLIDE       A(1/MEV)  T(MEV)    C(1/MEV)  EX(MEV)   PAIRING    
 57-LA-139     1.380E+01 6.500E-01 1.653E+00 4.468E+00 8.500E-01  
 57-LA-140     1.558E+01 5.900E-01 7.912E+00 3.425E+00 0.0        
 57-LA-141     1.894E+01 5.130E-01 3.056E+00 4.024E+00 7.600E-01  
 57-LA-142     2.026E+01 4.610E-01 1.125E+01 2.749E+00 0.0        
 58-CE-140     1.413E+01 6.541E-01 3.376E-01 5.852E+00 2.020E+00  
 58-CE-141     1.714E+01 5.150E-01 7.134E-01 3.957E+00 1.170E+00  
 58-CE-142     1.600E+01 6.000E-01 4.210E-01 5.674E+00 1.930E+00  
 58-CE-143     1.900E+01 5.500E-01 2.613E+00 5.094E+00 1.170E+00  
 59-PR-141     1.400E+01 6.500E-01 1.810E+00 4.559E+00 8.500E-01  
 59-PR-142     1.595E+01 6.150E-01 1.201E+01 3.974E+00 0.0        
 59-PR-143     1.500E+01 6.280E-01 2.607E+00 4.558E+00 7.600E-01  
 59-PR-144     1.600E+01 6.000E-01 1.045E+01 3.744E+00 0.0        
 Spin cutoff parameters were calculated as 0.146*sqrt(a)*a**(2/3).
 In the CASTHY calculation, spin cutoff factors at 0 MeV were     
 assumed to be 3.050 for Pr-143 and 5.0 for Pr-144.               
 1) Kawai, M. et al.: Proc. Int. Conf. on Nuclear Data for Science
    and Technology, Mito, p. 569 (1988).                          
 2) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,     
    Part A", Academic Press (1981).                               
 3) Igarasi, S.: J. Nucl. Sci. Technol., 12, 67 (1975).           
 4) Iijima, S. et al.: JAERI-M 87-025, p. 337 (1987).             
 5) Moldauer, P. A.: Nucl. Phys., 47, 65 (1963).                  
 6) Foster, D.G. Jr. and Glasgow, D.W.: Phys. Rev., C3, 576       
 7) Perey, F.G: Phys. Rev. 131, 745 (1963).                       
 8) Huizenga, J.R. and Igo, G.: Nucl. Phys. 29, 462 (1962).       
 9) Lohr, J.M. and Haeberli, W.: Nucl. Phys. A232, 381 (1974).    
10) Becchetti, F.D., Jr. and Greenlees, G.W.: Polarization        
    Phenomena in Nuclear Reactions ((Eds) H.H. Barshall and       
    W. Haeberli), p. 682, the University of Wisconsin Press.      
11) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446      
12) Iijima, S., et al.: J. Nucl. Sci. Technol. 21, 10 (1984).     
13) Gruppelaar, H.: ECN-13 (1977).                                
14) ENSDF: Evaluated Nuclear Structure Data File (June 1987).     
15) Nuclear Data Sheets, 48, 753 (1986).                          
16) Benzi, V. and Reffo, G.: CCDN-NW/10 (1969).                   
17) Kikuchi, K. and Kawai, M.: "Nuclear Matter and Nuclear        
    Reactions", North Holland (1968).                             
18) Forrest, R.A.: AERE-R 12419 (1986).                           
19) J.C.Roy, L.P.Roy: Can. J. Phys., 37, 907 (1959).              
20) V.A.Anufriev et al.: 1987 Kiev, Vol.2, p.229 (1987).          
21) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999)               
    [in Japanese].