34-Se- 82

 34-Se- 82 JAEA       EVAL-MAY09 S.Kamada, K.Shibata, A.Ichihara+ 
                      DIST-MAY10                       20091117   
----JENDL-4.0         MATERIAL 3449                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
09-05 Evaluated by S. Kamada (TIT), K. Shibata (JAEA), A. Ichihara
      (JAEA) and S. Kunieda (JAEA)                                
09-10 Compiled by K. Shibata.                                     
                                                                  
MF= 1 General information                                         
  MT=451 Descriptive data and directory                           
                                                                  
MF= 2  Resonance parameters                                       
  MT=151 Resolved and unresolved resonance parameters             
    Resolved resonance region (MLBW formula) : below 18 keV       
      Resonance energies were based on the experimental data by   
      Browne and Berman/1/.  The values of neutron orbital        
      angular momentum L and total spin J were assumed to be 0 and
      0.5 for all resonance levels, respectively.                 
                                                                  
      Reduced neutron width of each resonance level was roughly   
      estimated on the basis of the description for resonance     
      structures given by Browne and Berman, and of the reduced   
      neutron widths given by Mughabghab et al./2/ in the first   
      stage.  Next, thermal scattering cross section was          
      calculated using the roughly estimated reduced neutron      
      widths, and a normalization factor was obtained so as to    
      reproduce the experimental data of 5.0+-0.2 barns given by  
      Mughabghab et al.  The final neutron widths were determined 
      by using this normalization factor and the resonance        
      energies given by Browne and Berman.                        
                                                                  
      Scattering radius was taken from Mughabghab et al.  Average 
      radiation width was also determined so as to reproduce      
      thermal capture cross section of 44.2 mb given by Mughabghab
      et al.  A negative resonance was added at -120 eV in the    
      present analysis.                                           
                                                                  
    Unresolved resonance region: 18 keV - 1 MeV                   
      The parameters were obtained by fitting to the total and    
      capture cross sections calculated from POD /3/.  The        
      unresolved parameters should be used only for self-shielding
      calculation.                                                
                                                                  
    Thermal cross sections and resonance integrals at 300 K       
    ----------------------------------------------------------    
                     0.0253 eV           res. integ. (*)          
                      (barns)              (barns)                
    ----------------------------------------------------------    
     Total           5.0757E+00                                   
     Elastic         5.0315E+00                                   
     n,gamma         4.4214E-02           7.0976E-01              
    ----------------------------------------------------------    
       (*) Integrated from 0.5 eV to 10 MeV.                      
                                                                  
MF= 3 Neutron cross sections                                      
  MT=  1 Total cross section                                      
    Calculated with POD code /3/.                                 
                                                                  
  MT=  2 Elastic scattering cross section                         
    Obtained by subtracting non-elastic cross sections from total 
    cross sections.                                               
                                                                  
  MT=  3 Non-elastic cross section                                
    Sum of partial non-elastic cross sections.                    
                                                                  
  MT=  4,51-91 (n,n') cross section                               
    Calculated with POD code /3/.                                 
                                                                  
  MT= 16 (n,2n) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT= 17 (n,3n) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT= 22 (n,na) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT= 28 (n,np) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT=102 Capture cross section                                    
    Calculated with POD code /3/.                                 
                                                                  
  MT=103 (n,p) cross section                                      
    Calculated with POD code /3/.                                 
                                                                  
  MT=104 (n,d) cross section                                      
    Calculated with POD code /3/.                                 
                                                                  
  MT=105 (n,t) cross section                                      
    Calculated with POD code /3/.                                 
                                                                  
  MT=106 (n,He3) cross section                                    
    Calculated with POD code /3/.                                 
                                                                  
  MT=107 (n,a) cross section                                      
    Calculated with POD code /3/.                                 
                                                                  
  MT=203 (n,xp) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT=204 (n,xd) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT=205 (n,xt) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
  MT=206 (n,xHe3) cross section                                   
    Calculated with POD code /3/.                                 
                                                                  
  MT=207 (n,xa) cross section                                     
    Calculated with POD code /3/.                                 
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
  MT=  2 Elastic scattering                                       
    Calculated with POD code /3/.                                 
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
  MT= 16 (n,2n) reaction                                          
    Neutron spectra calculated with POD/3/.                       
                                                                  
  MT= 17 (n,3n) reaction                                          
    Neutron spectra calculated with POD/3/.                       
                                                                  
  MT= 22 (n,na) reaction                                          
    Neutron spectra calculated with POD/3/.                       
                                                                  
  MT= 28 (n,np) reaction                                          
    Neutron spectra calculated with POD/3/.                       
                                                                  
  MT= 51 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 52 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 53 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 54 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 55 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 56 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 57 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 58 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 59 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 60 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 61 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 62 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 63 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 64 (n,n') reaction                                          
    Neutron angular distributions calculated with POD/3/.         
                                                                  
  MT= 91 (n,n') reaction                                          
    Neutron spectra calculated with POD/3/.                       
                                                                  
  MT= 203 (n,xp) reaction                                         
    Proton spectra calculated with POD/3/.                        
                                                                  
  MT= 204 (n,xd) reaction                                         
    Deuteron spectra calculated with POD/3/.                      
                                                                  
  MT= 205 (n,xt) reaction                                         
    Triton spectra calculated with POD/3/.                        
                                                                  
  MT= 206 (n,xHe3) reaction                                       
    He3 spectra calculated with POD/3/.                           
                                                                  
  MT= 207 (n,xa) reaction                                         
    Alpha spectra calculated with POD/3/.                         
                                                                  
MF=12 Gamma-ray multiplicities                                    
  MT=  3 Non-elastic gamma emission                               
    Calculated with POD code /3/.                                 
                                                                  
MF=14 Gamma-ray angular distributions                             
  MT=  3 Non-elastic gamma emission                               
    Assumed to be isotropic.                                      
                                                                  
MF=15 Gamma-ray spectra                                           
  MT=  3 Non-elastic gamma emission                               
    Calculated with POD code /3/.                                 
                                                                  
                                                        
                                                                  
***************************************************************   
*        Nuclear Model Calculations with POD Code /3/         *   
***************************************************************   
1. Theoretical models                                             
 The POD code is based on the spherical optical model, the        
distorted-wave Born approximaiton (DWBA), one-component exciton   
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-    
tical model.  With the preequilibrim model, semi-empirical        
pickup and knockout process can be taken into account for         
composite-particle emission.  The gamma-ray emission from the     
compound nucleus can be calculated within the framework of the    
exciton model.  The code is capable of reading in particle        
transmission coefficients calculated by separate spherical or     
coupled-channel optical model code.                               
                                                                  
2. Optical model parameters                                       
Neutrons:                                                         
  Coupled-channel optical model parameters /4/                    
Protons:                                                          
  Koning and Delaroche /5/                                        
Deuterons:                                                        
  Lohr and Haeberli /6/                                           
Tritons:                                                          
  Becchetti and Greenlees /7/                                     
He-3:                                                             
  Becchetti and Greenlees /7/                                     
Alphas:                                                           
  Lemos /8/ potentials modified by Arthur and Young /9/           
                                                                  
3. Level scheme of Se- 82                                         
  -------------------------                                       
   No.   Ex(MeV)     J  PI                                        
  -------------------------                                       
    0    0.00000     0   +                                        
    1    0.65469     2   +                                        
    2    1.40990     0   +                                        
    3    1.73130     2   +                                        
    4    1.73499     4   +                                        
    5    2.55010     4   +                                        
    6    2.62570     3   -                                        
    7    2.89356     5   -                                        
    8    3.00980     3   -                                        
    9    3.10500     4   +                                        
   10    3.29300     4   +                                        
   11    3.38400     3   -                                        
   12    3.44900     0   +                                        
   13    3.45403     5   -                                        
   14    3.58600     2   +                                        
  -------------------------                                       
  Levels above  3.59600 MeV are assumed to be continuous.         
                                                                  
4. Level density parameters                                       
 Energy-dependent parameters of Mengoni-Nakajima /10/ were used   
  ----------------------------------------------------------      
  Nuclei    a*    Pair    Esh     T     E0    Ematch Elv_max      
          1/MeV   MeV     MeV    MeV    MeV    MeV    MeV         
  ----------------------------------------------------------      
  Se- 83  12.088  1.317  0.801  0.772 -0.514  6.837  1.331        
  Se- 82  10.867  2.650  1.071  0.699  1.874  6.455  3.586        
  Se- 81  10.589  1.333  1.999  0.755 -0.063  6.204  2.253        
  Se- 80  10.645  2.683  2.442  0.815  0.539  8.768  3.226        
  As- 82  10.840  0.000  0.258  0.718 -0.630  3.694  0.250        
  As- 81  10.293  1.333  1.087  0.887 -0.699  7.642  1.672        
  As- 80  10.620  0.000  1.706  0.844 -2.110  6.181  0.361        
  Ge- 80  10.645  2.683  0.595  0.756  1.750  6.939  3.515        
  Ge- 79  11.220  1.350  1.398  0.797 -0.544  7.026  1.187        
  Ge- 78  10.422  2.717  1.923  0.879  0.265  9.473  2.439        
  ----------------------------------------------------------      
                                                                  
5. Gamma-ray strength functions                                   
   M1, E2: Standard Lorentzian (SLO)                              
   E1    : Generalized Lorentzian (GLO) /11/                      
                                                                  
6. Preequilibrium process                                         
   Preequilibrium is on for n, p, d, t, He-3, and alpha.          
   Preequilibrium capture is on.                                  
                                                                  
References                                                        
 1) J.C.Browne, B.L.Berman, Phys. Rev. C26, 969 (1982).           
 2) S.F.Mughabghab et al., "Neutron Cross Sections, Vol. I,       
    Part A", Academic Press (1981).                               
 3) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).            
 4) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).      
 5) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).      
 6) J.M.Lohr, W.Haeberli, Nucl. Phys. A232, 381 (1974).           
 7) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization               
    Phenomena in Nuclear Reactions," p.682, The University        
    of Wisconsin Press (1971).                                    
 8) O.F.Lemos, Orsay Report, Series A, No.136 (1972).             
 9) E.D.Arthur, P.G.Young, LA-8626-MS (1980).                     
10) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151         
    (1994).                                                       
11) J.Kopecky, M.Uhl, Nucl. Sci. Eng. 41, 1941 (1990).