4-Be- 9 JAEA Eval-Feb09 K.Shibata JAERI-M 84-226 DIST-DEC21 20100217 ----JENDL-5 MATERIAL 425 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT HISTORY 84-08 Reevaluated for JENDL-3 by K.Shibata. Details of the evaluation are given in ref/1/. 89-01 Modified by considering neutron emission spectra 94-02 Evaluated for JENDL Fusion File. Neutron and alpha emission spectra from the (n,2n) reaction were calculated and given in MF6. Elastic angular distributios were modified by taking account of new measurements. 99-07 DDX above 15 MeV were modified by considering the measurements /45/. 01-09 Compiled by K.Shibata for JENDL-3.3. The library was taken from JENDL fusion file. ** modified parts for JENDL-3.3 (change from JENDL FF)**** (1,451) Updated. (3,251) Deleted. (6,16) Above 15 MeV. (4,2) Transformation matrix deleted. ********************************************************** 10-02 Re-evaluated by K.Shibata for JENDL-4. *** Modified parts for JENDL-4 *************************** (1,451) Updated (3,1) Modified (3,2) Re-calculated (3,16) Revised near the threshold (3,102) Thermal cross section was updated. ********************************************************** 21-11 revised by O.Iwamoto (MF8/MT16,102-105,107) JENDL/AD-2017 adopted MF=1 General Information MT=451 Descriptive data MF=2 Resonance Parameter MT=151 Scattering radius only. MF=3 Cross Sections Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 6.5119E+00 Elastic 6.5027E+00 n,gamma 8.4909E-03 3.8223E-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MT=1 Sig-t Below 1 eV, sum of sig-el and sig-cap. Between 1 eV and 830 keV, the cross section was calculated on the basis of the R-matrix theory. The R-matrix parameters were obtained so as to give the best fit to the experimental data /2/-/6/. Above 830 keV, based on the measurements /5/,/7/,/8/. ***** For JENDL-4 *************************************** In the energy region from 80 keV to 890 keV, the cross sections were reduced by considering those of JENDL-2 and the latest experimental data./46/ ********************************************************** MT=2 Sig-el Below 1 eV, sig-el = 6.151 barns. Above 1 ev, the cross section was obtained by subtracting the reaction cross section from the total cross section. MT=3 Non-elastic Sum of MT=16,102,104,103,105,107 MT=16 The cross sections were evaluated on the basis of experimental data /9/-/17/. ***** For JENDL-4 *************************************** The cross sections near the threshold were modified on the basis of the measurements/11/. ********************************************************** MT=102 Capture Thermal cross section of 8.49E-3 barn was obtained from the data measured by Conneely et al./18/ 1/v curve was assumed over the whole energy range. MT=103 (n,p) Calculated with the statistical model. Neutron potential parameters were taken from the work of Agee and Rosen /19/: V = 49.3 - 0.33E, Ws = 5.75 , Vso = 5.5 (MeV) r = 1.25 , rs = 1.25 , rso = 1.25 (fm) a = 0.65 , b = 0.70 , aso = 0.65 (fm) Proton potential parameters are the following /20/: V = 59.5 - 0.36e, Ws = 12.0 + 0.07E, Vso = 4.9 (MeV) r = 1.24 , rs = 1.36 , rso = 1.2 (fm) rc= 1.3 (fm) a = 0.63 , b = 0.35 , aso = 0.31 (fm) The cross section was normalized to the experimental data of Augustson and Menlove /21/, who measured delayed neutros, by taking account of the branching ratio of 49.5% for Li-9 => Be-9* => 2a + n. MT=104 (n,d) Based on the experimental data of Scobel /22/. MT=105 (n,t) Based on experimental data /23/-/27/. MT=107 (n,a0) Based on the experimental data /28/-/33/. MT=251 Mu-bar Calculated from the data in file4. MT=700 (n,t0) Calculated with the statistical model. Triton potential parameters are the following /34/: V = 140.0 , Ws = 7.5 , Vso = 6.0 (MeV) r = 1.20 , rs = 2.69 , rso = 1.20 , rc = 1.30 (fm) a = 0.45 , b = 0.36 , aso = 0.7 (fm) Normalization was taken so that the total (n,t) cross section might be consistent with experimental data. MT=701 (n,t1) Total (n,t) - (n,t1) MF=4 Angular Distributions MT=2 1.0E-5 eV to 50 keV Isotropic in CM. 50 keV to 17 MeV Based on the experimental data /35/-/42/. 18 MeV to 20 MeV Optical-model calculations using the potential parameters of Agee and Rosen /19/. MF=6 Double Differential Cross Sections MT=16 Calculated by taking account of kinematics of possible reactions. The following reactions were taken into account: n + Be-9 -> 2n + Be-8 -> 2n + 2a -> He-5 + He-5 -> 2n + 2a -> a + He-6(1.8) -> 2n + 2a -> n + Be-9(2.4) -> 2n + Be-8 -> 2n + 2a -> n + Be-9(4.7) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a -> n + Be-9(6.8) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a -> n + Be-9(7.9) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a -> n + Be-9(11.28) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a -> n + Be-9(11.81) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a -> n + Be-9(13.79) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a -> n + Be-9(cont.) -> 2n + Be-8 -> 2n + 2a -> n + a + He-5 -> 2n + 2a The branching ratio of each reaction was determined on the basis of experimental data and of statistical model calculations. MT=600 Isotropic angular distribution assumed. MT=650 Isotropic angular distribution assumed. MT=700 Isotropic angular distribution assumed. MT=701 Isotropic angular distribution assumed. MT=800 Angular distributions were obtained from the work of Smolec et al./43/ MF=12 Photon-Production Multiplicities MT=102 Based on the measurements of Jurney /44/. MF=14 Photon Angular Distributions MT=102 Assumed to be isotropic. References 1) Shibata, K.: JAERI-M 84-226 (1984). 2) Bockelman, C.K.: Phys. Rev. 80 (1950) 1011. 3) Hibdon, C.T. and Langsdorf, Jr., A.: Phys. Rev. 98 (1955) 223. 4) Bilpuch, E.G. et al.: Taken from EXFOR (1962). 5) Schwartz, R.B. et al.: Bull. Am. Phys. Soc. 16 (1971) 495. 6) Cabe, J and Cance, M.: CEA-R-4524 (1973). 7) Foster, Jr. D.G. and Glasgow, D.W.: Phys. Rev. C3 (1971) 576. 8) Auchampaugh, G.F. et al.: Nucl. Sci. Eng. 69 (1979) 30. 9) Ashby, V.J. et al.: Phys. Rev. 111 (1958) 616. 10) Catron, H.C. et al.: Phys. Rev. 123 (1961) 218. 11) Holmberg, M. and Hansen, J.: Nucl. Phys. A129 (1969) 305. 12) Bloser, M: Atomkernenergie 20 (1972) 309. 13) Drake, D.M. et al.: Nucl. Sci. Eng. 63 (1977) 401. 14) Auchampaugh G.F. et al.: Proc. Symp. Neutron Cross Sections from 10 to 40 MeV, BNL, 1977, p.231. 15) Baba, M. et al.: Proc. Int. Conf. Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, Harwell 1978, (1979), p.198. 16) Takahasi, A. et al.: Proc. Int. Conf. Nuclear Data for Science and Technology, Mito, 1988, p.205 (1988). 17) Baba, M et al.: ibid., p.209 (1988). 18) Conneely, C.M. et al.: Nucl. Instrum. Meth., A248 (1986) 426. 19) Agee, F.P. and Rosen, L.: LA-3538-MS (1966). 20) Votava, H.J. et al.: Nucl. Phys. A204 (1973) 529. 21) Augustson, R.H. and Menlove, H.O.: Nucl. Sci. Eng. 54(1974)190 22) Scobel, W.: Z. Naturforsch. A24 (1969) 1858. 23) Wyman, M.E et al.: Phys. Rev. 112 (1958) 1264. 24) Biro, T. et al.: J. Inorg. Nucl. Chem. 37 (1975) 1583. 25) Body, Z.T. et al.: Proc. Int. Conf. Nuclear Data for Science and Technology, Antwerp, 1982, p.368 (1982). 26) Liskien, H. et al.: Nucl. Sci. Eng. 98 (1988) 266. 27) Woelfle, R. et al.: Radiochimica Acta 50 (1990) 5. 28) Shibata, K. and Shirato, S.: J. Phys. Soc. Jpn. 52 (1983) 3748 29) Perroud, J.P. and Sellem, Ch.: Nucl. Phys. A227 (1974) 330. 30) Battat, M.E. and Ribe, F.L.: Nucl. Phys. 89 (1953) 80. 31) Stelson, P.H. and Campbell, E.C.: Nucl. Phys. 106 (1957) 1252. 32) Bass, R. et al.: Nucl. Phys. 23 (1961) 122. 33) Paic, G. et al.: Nucl. Phys. A96 (1967) 476. 34) Luedecke, H. et al.: Nucl. Phys. A109 (1968) 676. 35) Marion, J.B. et al.: Phys. Rev. 114 (1959) 1584. 36) Levin, J.S. and Cranberg, L.: Taken from EXFOR (1960). 37) Phillips, D.D.: Taken from EXFOR (1961). 38) Lane, R.O. et al.: Ann. Phys. 12 (1961) 135. 39) Lane, R.O. et al.: Phys. Rev. 133B (1964) 409. 40) Hogue , H.H. et al.: Nucl. Sci. Eng. 68 (1978) 38. 41) Sugimoto, M. et al.: Nucl. Sci. Eng. 103 (1989) 37. 42) Templon, J.A., et al.: Nucl. Sci. Eng. 91 (1985) 451. 43) Smolec, W. et al.: Nucl. Phys. A257 (1976) 397. 44) Jurney, E.T.: Proc. Third Symp. Neutron Capture Gamma Rays, BNL 1978, (1979), p.46. 45) Ibaraki, M., et al.: J. Nucl. Sci. Technol., 35, 843 (1998). 46) Danon, Y., et al.: Nucl. Sci. Eng., 161, 321 (2009).