19-K - 39 JAEA EVAL-Jun21 N.Iwamoto DIST-DEC21 20210630 ----JENDL-5 MATERIAL 1925 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-06 Evaluated with CCONE code by N.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 1.0 MeV Resolved resonance parameters were taken from ENDF/B-VIII.0//1/. The evaluation details in Appendix A were taken from ENDF/B-VIII.0. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.21747E+00 Elastic 2.08567E+00 n,gamma 2.12725E+00 9.91312E-01 n,p 5.60789E-09 3.82305E-09 n,alpha 4.30079E-03 1.93214E-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. MT= 2 Elastic scattering cross section Calculated with CCONE code /2/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT= 44 (n,n2p) cross section Calculated with CCONE code /2/. MT= 45 (n,npa) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. MT=108 (n,2a) cross section Calculated with CCONE code /2/. MT=111 (n,2p) cross section Calculated with CCONE code /2/. MT=112 (n,pa) cross section Calculated with CCONE code /2/. MT=115 (n,pd) cross section Calculated with CCONE code /2/. MT=117 (n,da) cross section Calculated with CCONE code /2/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /2/. MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT= 44 (n,n2p) reaction Calculated with CCONE code /2/. MT= 45 (n,npa) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=108 (n,2a) reaction Calculated with CCONE code /2/. MT=111 (n,2p) reaction Calculated with CCONE code /2/. MT=112 (n,pa) reaction Calculated with CCONE code /2/. MT=115 (n,pd) reaction Calculated with CCONE code /2/. MT=117 (n,da) reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT= 44 (n,n2p) reaction Decay chain is given in the decay data file. MT= 45 (n,npa) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=108 (n,2a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MT=115 (n,pd) reaction Decay chain is given in the decay data file. MT=117 (n,da) reaction Decay chain is given in the decay data file. MF=10 Nuclide production cross sections MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT=111 (n,2p) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ modified proton : global OMP, A.J.Koning and J.P.Delaroche/4/ modified deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : L.McFadden and G.R.Satchler/7/ modified * Level scheme of K-39 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 3/2 + 1 2.522500 1/2 + 2 2.814300 7/2 - 3 3.019200 3/2 - 4 3.597500 9/2 - 5 3.883100 5/2 - 6 3.938800 3/2 + 7 3.944300 11/2 - 8 4.082300 3/2 - 9 4.095300 1/2 + 10 4.126000 7/2 - 11 4.475100 3/2 - 12 4.514300 5/2 + 13 4.520200 9/2 - 14 4.678600 7/2 - 15 4.737500 5/2 - 16 4.737900 5/2 + 17 4.930100 3/2 + 18 4.977000 5/2 - 19 5.009100 7/2 - 20 5.010600 3/2 - 21 5.157000 7/2 - 22 5.163900 9/2 - 23 5.165500 5/2 - 24 5.173400 5/2 + 25 5.262700 5/2 + 26 5.318200 3/2 + 27 5.354000 11/2 - 28 5.370000 3/2 - 29 5.501000 3/2 + 30 5.501900 7/2 - 31 5.597900 5/2 + 32 5.643400 7/2 - 33 5.711500 3/2 + 34 5.718300 13/2 - 35 5.788300 5/2 + 36 5.801600 7/2 - 37 5.826300 3/2 - 38 5.891000 7/2 - 39 5.899000 3/2 - 40 5.937900 5/2 + ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- K-40 5.447 0.000 0.148 1.642 -3.175 9.345 3.486 K-39 6.204 1.922 -1.352 1.351 0.877 9.123 5.938 K-38 6.078 0.000 -1.971 1.380 -0.608 7.216 4.639 Ar-39 6.204 1.922 1.358 1.337 -0.884 9.614 3.740 Ar-38 6.078 3.893 -0.301 1.466 1.331 12.869 6.824 Ar-37 5.952 1.973 -1.140 1.582 -0.701 11.710 5.267 Ar-36 5.825 4.000 -2.322 1.672 1.864 15.205 7.136 Cl-38 4.437 0.000 0.872 1.717 -2.123 7.569 4.074 Cl-37 5.952 1.973 -0.263 1.400 0.136 9.679 5.528 Cl-36 5.825 0.000 -1.639 1.429 -0.829 7.532 4.525 Cl-35 5.698 2.028 -1.964 1.725 -0.691 13.773 5.823 --------------------------------------------------------- * Gamma-ray strength functions for K-40 E1: hybrid model(GH)/10/ ER= 20.26 (MeV) EG= 8.14 (MeV) SIG= 56.17 (mb) M1: standard lorentzian model(SLO) ER= 11.99 (MeV) EG= 4.00 (MeV) SIG= 2.51 (mb) E2: standard lorentzian model(SLO) ER= 18.42 (MeV) EG= 5.63 (MeV) SIG= 0.95 (mb) ****************************************************************** Appendix A from ENDF/B-VIII.0 ****************************************************************** K39,41 Resonance Parameter Evaluation, October, 2007. R. O. Sayer, K. H. Guber, L. C. Leal, N. M. Larson (ORNL) We performed an evaluation of K39 and K41 neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were carried out with the computer code SAMMY [1], which utilizes Bayes' method, a generalized least squares technique. Our evaluation incorporates recent high-resolution capture and transmission measurements at the Oak Ridge Electron Linear Accelerator (ORELA) to extend the resolved resonance energy range to 1.0 MeV with much more accurate representation of the data than previous evaluations. The data include transmission measurements by Guber, et al.[2] and Harvey, et al. [3] on the 80-m flight path at ORELA; total cross section data of Cierjacks, et al.[4], on a 57-m flight path at the Karlsruhe Isochronous Cyclotron; and Singh, et al.[5] on the 200-m flight path at the Columbia synchrocyclotron. Also included in the evaluation were the high resolution capture cross section data (0.1 < En < 600 keV) of Guber, et al. [2] and the older, low resolution capture data (0.02 < En < 10 eV) of Joki, et al. [6]. We have included resonance parameters (RPs) in File 2, MT=151, and the corresponding RP covariance matrices in File 32, MT=151. The Reich-Moore format with LRF=3 and LCOMP=1 was utilized. The applicable energy range is 0.00001 eV to 1.0 MeV. The RADCOP code [7] was used to generate both File 2 and File 32. At 1.0 MeV the File 3 total and elastic cross section values from the previous ENDF evaluations were adjusted slightly to join smoothly with the resonance parameter values. For capture cross sections above 1 MeV, the previous ENDF K39 theoretical values were normalized to 0.436 mb at 1 MeV, and the K41 values were normalized to match the data of ref [8] at 1 MeV. Since the resonance parameter representation does not include the direct capture (DC) part of the capture cross section, the DC component was included as a "background" 1/v cross section in File 3, sections 1 and 102. At E = 0.0253 eV, the calculated [9] DC cross section for K39 (K41) is 0.80 (0.52) b, which is a large fraction of the overall capture cross section of 2.10 (1.46) b. The upper energy limit for the DC cross section is estimated to be 100 keV. Therefore, the "background" 1/v cross section was terminated at this energy value. The following table gives a comparison of our elastic, capture, and total cross sections for En = 0.0253 eV and T = 0K with the corresponding ENDF/B-VII.0 quantities, which are based principally on the compilation of Mughabghab [10]. The capture cross section values include the DC contribution. The quoted uncertainties, obtained from File 32, reflect the rather large experimental uncertainties in the thermal values. K Thermal Cross Sections for T = 0K Nuclide Quantity ENDF/B-VII.0 (b) Present Evaluation (b) ------- ------- -------------- ---------------------- 39K total 4.16 4.19 +- 0.14 elastic 2.06 2.06 +- 0.10 capture 2.10 2.13 +- 0.10 41K total 4.03 4.03 +- 0.14 elastic 2.57 2.56 +- 0.10 capture 1.46 1.46 +- 0.09 REFERENCES ---------- [1] N. M. Larson, ORNL/TM-9179/R7 (2006), ENDF-364/R1. [2] K. H. Guber, L. C. Leal, R. O. Sayer, P. E. Koehler, T. E. Valentine, H. Derrien, and J. A. Harvey, Rad. Protection Dosimetry 116, 579 (2005); K. H. Guber, L. C. Leal, R. O. Sayer, P. E. Koehler, T. E. Valentine, H. Derrien, and J. A. Harvey, Nucl. Inst. Meth. Phys. Res. B241, 218 (2005); K.H. Guber, L.C. Leal, R.O. Sayer, P.E. Koehler, D. Wiarda, T.E. Valentine, H. Derrien, J.A. Harvey, S. Kopecky, P. Siegler, P. Schillebeeckx, R. Wynants, I. Ivanov, A. Borella, R. Nelson, M. Devlin, and N. Fotiadis, submitted for publication in proceedings of Physor-2006. [3] W. M. Good, J. A. Harvey, and N. W. Hill, ORNL-4937, p. 198 (1973); J. A. Harvey, private communication. [4] S. Cierjacks, P.Forti, D. Kopsch, L. Kropp, J. Nebe, and H. Unseld, "High Resolution Total Neutron Cross Sections for Na, Cl, K, V, MN and Co between 0.5 and 30 MEV", KFK-1000, (1969). [5] U. N. Singh, H. I. Liou, G. Hacken, M. Slagowitz, F. Rahn, J. Rainwater, W. Makofske, and J. Garg, "Neutron Resonance Spectroscopy: Chlorine", Phys. Rev. C10, 2138 (1974). [6] E. G. Joki, L. G. Miller, and J. E. Evans, Phillips Petroleum Report IDO-16276, 1955. [7] R. O. Sayer and D. Wiarda, Physor-2006, Vancouver, B. C., Canada (2006). [8] D. C. Stupegia, M. Schmidt, C. R. Keedy, and A. A. Madson J. Nucl. Energ., 22, 267 (1968). [9] G. Arbanas, private communication. [10] S. F. Mughabghab, et al., Neutron Cross Sections, v.1 (1981) ****************************************************************** References 1) D.A.Brown et al., Nucl. Data Sheets, 148, 1 (2018) 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 8) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965) 9) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S. Goriely, Phys. Lett. B436, 10 (1998)