23-V - 50 JAEA EVAL-Mar10 N.Iwamoto DIST-DEC21 20100312 ----JENDL-5 MATERIAL 2325 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-03 The resolved resonance parameters were evaluated by N.Iwamoto. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 20-10 JENDL-5b3 revised by N.Iwamoto. (MF3/MT16,22,91) revised (MF3,6/MT600-849) added (MF6/MT111,112) added (MF8,9,10) added (MF3/MT1,2,4,103-107) recalculated 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 42.5 keV Resolved resonance parameters were taken from Mughabghab /1/. If the total spin J of resonance level was not known, it was determined from the spin distribution of the level density randomly. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /1/. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 5.2385e+01 Elastic 7.6986e+00 n,gamma 4.4685e+01 5.9287e+01 n,p 7.1023e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT= 51-91 (n,n') cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. MT=103 (n,p) cross section Calculated with CCONE code /2/. The cross section at thermal energy was evaluated so as to reproduce the data measured by Wagemans et al./3/. MT=104 (n,d) cross section Calculated with CCONE code /2/. MT=105 (n,t) cross section Calculated with CCONE code /2/. MT=106 (n,He3) cross section Calculated with CCONE code /2/. MT=107 (n,a) cross section Calculated with CCONE code /2/. MT=111 (n,2p) cross section Calculated with CCONE code /2/. MT=112 (n,pa) cross section Calculated with CCONE code /2/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT= 51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. ***************************************************************** Nuclear Model Calculation with CCONE code /2/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * optical model potential neutron omp: Kunieda,S. et al./4/ proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: McFadden,L. and Satchler,G.R./8/ 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of standard Lorentzian form was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of V-50 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 6 + 1 0.22620 5 + 2 0.32016 4 + 3 0.35540 3 + 4 0.38840 2 + 5 0.83630 5 + 6 0.91000 7 + 7 0.91010 4 + 8 1.30140 2 + 9 1.33150 1 + 10 1.40190 3 + 11 1.49530 1 + 12 1.51840 2 + 13 1.56170 2 + 14 1.67720 3 + 15 1.70020 4 + 16 1.70310 5 - 17 1.71890 3 + 18 1.72460 8 + 19 1.72520 4 - 20 1.75150 3 + 21 1.76150 6 + 22 1.76230 3 + 23 1.81080 2 + 24 1.88240 5 + 25 1.93600 1 + 26 1.95400 1 + 27 2.03800 3 - 28 2.03801 3 + 29 2.11100 3 + 30 2.13300 3 + 31 2.16200 4 - 32 2.30800 2 + 33 2.31260 7 + 34 2.34400 3 + 35 2.39900 5 - 36 2.42400 3 - 37 2.42500 1 + 38 2.45500 4 + 39 2.47830 9 + 40 2.48300 5 + ------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- V- 51 6.9100 1.6803 -0.6457 1.5183 -2.1580 12.5084 V- 50 7.0000 0.0000 -0.6353 1.4319 -3.1193 9.4496 V- 49 6.7530 1.7143 0.1225 1.5781 -3.1344 13.3216 Ti- 50 7.2500 3.3941 -0.4613 1.2919 1.1007 10.9863 Ti- 49 7.8800 1.7143 0.2445 1.1040 -0.1128 7.6316 Ti- 48 7.0700 3.4641 0.6643 1.4400 -0.8454 13.4405 Sc- 49 6.7530 1.7143 -0.4669 1.1948 0.6746 6.9625 Sc- 48 7.3300 0.0000 0.2130 1.1004 -1.3101 5.1281 Sc- 47 6.5239 1.7504 1.5602 1.4579 -2.4909 11.0454 Sc- 46 6.7339 0.0000 1.4596 1.2544 -2.5877 6.7871 -------------------------------------------------------- Table 3. Gamma-ray strength function for V- 51 -------------------------------------------------------- * E1: ER = 19.11 (MeV) EG = 7.28 (MeV) SIG = 79.52 (mb) * M1: ER = 11.06 (MeV) EG = 4.00 (MeV) SIG = 8.51 (mb) * E2: ER = 16.99 (MeV) EG = 5.50 (MeV) SIG = 1.12 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 3) Wagemans,C., Druyts,S., Geltenbort,P.: Phys. Rev. C50, 487 (1994). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994).