23-V - 51 JAEA EVAL-Mar10 N.Iwamoto DIST-DEC21 20100312 ----JENDL-5 MATERIAL 2328 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-03 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 20-10 JENDL-5b3 revised by N.Iwamoto. (MF3,6/MT600-849) added (MF6/MT111,112) added (MF8,9,10) added (MF3/MT1,2,4,103-107) recalculated 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (Reich-Moore formula) : below 100.0 keV. Parameters were evaluated based on experimental data /1,2,3,4,5/ and modified to reproduce experimental total cross sections. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /4/. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 9.8868e+00 Elastic 4.9677e+00 n,gamma 4.9191e+00 2.5607e+00 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section In the energy range from 0.1 to 5 MeV, cross section was adopted from JENDL-3.3. Above 5 MeV, cross section was calculated with CCONE code/6/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MT=111 (n,2p) cross section Calculated with CCONE code /6/. MT=112 (n,pa) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering The Legendre coefficients were taken from JEFF-3.1, taking into account the result of a benchmark test. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * optical model potential neutron omp: Kunieda,S. et al./7/ proton omp: Koning,A.J. and Delaroche,J.P./8/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ (+) He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: Huizenga,J.R. and Igo,G./11/ (+) (+) omp parameters were modified. * DWBA calculation levels: 2,3,4 (see Table 1) 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of standard Lorentzian form was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of V-51 --------------------------------- No. Ex(MeV) J PI, DWBA: beta --------------------------------- 0 0.00000 7/2 - 1 0.32008 5/2 - 2 0.92866 3/2 - 0.06 3 1.60923 11/2 - 0.07 4 1.81324 9/2 - 0.07 5 2.41078 3/2 - 6 2.54740 1/2 + 7 2.67743 3/2 + 8 2.69962 15/2 - 9 2.79000 5/2 - 10 3.08362 5/2 - 11 3.15000 3/2 - 12 3.21480 3/2 - 13 3.26403 5/2 - 14 3.27999 5/2 - 15 3.31000 5/2 + 16 3.32000 5/2 - 17 3.37200 3/2 - 18 3.37772 9/2 - 19 3.38110 3/2 - 20 3.38320 9/2 + 21 3.38558 13/2 - 22 3.39502 13/2 - 23 3.41220 7/2 + 24 3.44392 5/2 + 25 3.45409 9/2 - 26 3.51702 9/2 - 27 3.55480 9/2 - 28 3.56260 5/2 - 29 3.56820 7/2 - 30 3.57663 3/2 - 31 3.61405 9/2 - 32 3.62370 5/2 + 33 3.63200 3/2 + 34 3.63203 5/2 - 35 3.66310 3/2 - 36 3.66800 3/2 - 37 3.67780 3/2 - 38 3.68300 5/2 - 39 3.72270 5/2 - 40 3.74300 1/2 + --------------------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- V- 52 7.5500 0.0000 -0.6140 1.1810 -1.6043 6.2628 V- 51 6.9100 1.6803 -0.6457 1.5183 -2.1580 12.5084 V- 50 7.0000 0.0000 -0.6353 1.4319 -3.1193 9.4496 Ti- 51 6.8200 1.6803 -0.3127 1.1927 0.5191 7.0839 Ti- 50 7.2500 3.3941 -0.4613 1.2919 1.1007 10.9863 Ti- 49 7.8800 1.7143 0.2445 1.1040 -0.1128 7.6316 Sc- 50 7.2083 0.0000 -0.8027 1.2352 -1.5662 6.4725 Sc- 49 6.7530 1.7143 -0.4669 1.1948 0.6746 6.9625 Sc- 48 7.3300 0.0000 0.2130 1.1004 -1.3101 5.1281 Sc- 47 6.5239 1.7504 1.5602 1.4579 -2.4909 11.0454 -------------------------------------------------------- Table 3. Gamma-ray strength function for V- 52 -------------------------------------------------------- * E1: ER = 19.02 (MeV) EG = 7.21 (MeV) SIG = 81.49 (mb) * M1: ER = 10.98 (MeV) EG = 4.00 (MeV) SIG = 8.28 (mb) * E2: ER = 16.88 (MeV) EG = 5.49 (MeV) SIG = 1.10 (mb) -------------------------------------------------------- References 1) Brusegan,A. et al.: Neutron Total Cross Section of Vanadium, 97Trieste 410,(1997). 2) Winters,R.R. et al.: Phys. Rev. C18, 2092 (1978). 3) Garg,J.B. et al.: Nucl. Sci. Eng. 65, 76 (1978). 4) Mughabghab,S.F. et al.: "Neutron Cross Sections Vol.1 Part A" Academic Press (1981). 5) Macklin,R.L. et al.: Nucl. Sci. Eng. 78, 110 (1981). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994).