26-Fe- 58 JAEA EVAL-Jun21 N.Iwamoto DIST-DEC21 20210630 ----JENDL-5 MATERIAL 2637 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-06 Evaluated with CCONE code by N.Iwamoto 21-09 Secondary energy grids were added below 100keV by N.Iwamoto 21-10 Secondary energy grids were revised below 100keV by N.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto 21-12 JENDL-5rc1 revised by N.Iwamoto (MF33/MT1-107, MF34/MT2) Evaluated with CCONE-KALMAN MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 350 keV Resolved resonance parameters were taken from JEFF-3.2/1/. RESOLVED RESONANCE RANGE (adopted from JEFF-3.2) ------------------------------------------------ Reich-Moore resolved resonance parameters covering the energy range 1.0e-5 eV to 350 keV were reevaluated by M.C. Moxon [mox05] under a service agreement with the IAEA (2004). Thermal cross sections ---------------------- Thermal cross section values are implicit in the resonance parameters evaluated by M.C. Moxon [mox05]. The 2200 m/s cross section values for T = 0 are as follows: Total 8.790 b Elastic scattering 7.476 b Radiative capture 1.314 b (1.30 b [mug03]) (1.31 b [mox02]) The expected 1/v dependence of the capture cross section below the first positive resonance is accomplished by the addition of several negative energy resonances. The radiation width of the first bound level was adjusted so to reproduce the evaluated thermal capture cross section. [mox02] M.C. Moxon, C.J. Dean: The thermal activation cross section of 58Fe, AEAT-6261, October 2001, also JEFDOC-972. [mox05] M.C. Moxon, Evaluation of the resonance region for 58Fe, INDC(UK)-089 Rev.1, International Atomic Energy Agency, (February 2005). Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 8.85760E+00 Elastic 7.54276E+00 n,gamma 1.31483E+00 1.26083E+00 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. MT= 2 Elastic scattering cross section Calculated with CCONE code /2/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /2/. MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MF=10 Nuclide production cross sections MT=103 (n,p) reaction Calculated with CCONE code /2/. MF=33 Covariances of neutron cross sections Covariances were given to all the cross sections by using KALMAN code and the covariances of model parameters used in the cross-section calculations. Data in the RRR were taken from JEFF-3.2. MF=34 Covariances for Angular Distributions MT= 2 Elastic scattering Covariances were given only to P1 components. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials neutron : A.J.Koning and J.P.Delaroche/3/ modified proton : global OMP, A.J.Koning and J.P.Delaroche/4/ modified deuteron: Y.Han et al./3/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./5/ alpha : L.McFadden and G.R.Satchler/6/ modified * Level scheme of Fe-58 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.810770 2 + 2 1.674730 2 + 3 2.076520 4 + 4 2.133890 3 + 5 2.257950 0 + 6 2.600400 4 + 7 2.782140 1 + 8 2.864720 5 - 9 2.876340 2 + 10 2.970000 5 - 11 3.083690 2 + 12 3.134000 4 + 13 3.233260 2 + 14 3.243970 0 + 15 3.389000 2 + 16 3.449700 4 + 17 3.537970 1 + 18 3.543000 2 + 19 3.596900 6 + 20 3.629600 2 + 21 3.754200 4 + 22 3.789490 5 - 23 3.854000 2 + 24 3.860900 3 - 25 3.880100 1 + 26 3.886400 6 + 27 3.901620 3 + 28 4.010800 2 + 29 4.015010 1 + 30 4.088490 4 + 31 4.139240 1 + 32 4.158000 0 + 33 4.214640 5 + 34 4.230000 4 - 35 4.237000 2 + 36 4.297800 2 + 37 4.312920 2 + 38 4.322500 1 + 39 4.340000 4 + 40 4.348000 2 + ----------------------- * Level density parameters (Gilbert-Cameron model/6/) Energy dependent parameters of Mengoni-Nakajima/7/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Fe-59 8.956 1.562 0.279 1.067 -1.008 8.388 2.570 Fe-58 7.852 3.151 -0.530 1.435 -1.487 14.731 4.348 Fe-57 8.315 1.589 -1.312 1.366 -2.315 12.701 3.059 Fe-56 8.265 3.207 -2.152 1.503 -1.634 17.526 4.683 Mn-58 8.500 0.000 1.105 1.097 -2.930 6.979 0.817 Mn-57 8.383 1.589 0.838 1.101 -1.122 8.423 2.848 Mn-56 8.088 0.000 -0.645 1.291 -3.292 9.240 1.780 Mn-55 8.148 1.618 -1.124 1.431 -3.019 13.792 3.046 Cr-57 8.383 1.589 2.198 0.892 0.003 6.022 1.858 Cr-56 8.265 3.207 1.573 0.986 1.223 8.515 4.284 Cr-55 9.777 1.618 0.422 0.817 0.473 6.002 3.183 Cr-54 7.363 3.266 -0.310 1.482 -1.341 14.697 4.256 Cr-53 7.868 1.648 -1.137 1.298 -1.087 10.541 3.435 --------------------------------------------------------- * Gamma-ray strength functions for Fe-59 E1: hybrid model(GH)/8/ ER= 16.43 (MeV) EG= 5.45 (MeV) SIG= 32.63 (mb) ER= 19.66 (MeV) EG= 7.69 (MeV) SIG= 65.26 (mb) M1: standard lorentzian model(SLO) ER= 10.53 (MeV) EG= 4.00 (MeV) SIG= 1.76 (mb) E2: standard lorentzian model(SLO) ER= 16.18 (MeV) EG= 5.40 (MeV) SIG= 1.26 (mb) References 1) JEFF-3.2 evaluated data library - Neutron data (2014) 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 3) Y.Han et al., Phys. Rev. C 74,044615(2006) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 6) L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 6) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965) 7) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 8) S. Goriely, Phys. Lett. B436, 10 (1998)