30-Zn- 64 JAEA EVAL-Feb21 N.Iwamoto DIST-DEC21 20210228 ----JENDL-5 MATERIAL 3025 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-02 Evaluated with CCONE code by N.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 130 keV Resolved resonance parameters were taken from Garg et al. /1/,/2/, supplimented by the data of Julien et al./3/. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab/4/. Unresolved resonance region : 130 keV - 800 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.71552E+00 Elastic 3.92801E+00 n,gamma 7.87472E-01 1.35757E+00 n,alpha 1.09960E-05 3.67292E-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /6/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT=4,51-91 (n,n') cross section Calculated with CCONE code /6/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 44 (n,n2p) cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /6/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /6/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /6/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /6/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /6/. MT=108 (n,2a) cross section Calculated with CCONE code /6/. MT=111 (n,2p) cross section Calculated with CCONE code /6/. MT=112 (n,pa) cross section Calculated with CCONE code /6/. MT=115 (n,pd) cross section Calculated with CCONE code /6/. MT=117 (n,da) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /6/. MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 44 (n,n2p) reaction Calculated with CCONE code /6/. MT=51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. MT=108 (n,2a) reaction Calculated with CCONE code /6/. MT=111 (n,2p) reaction Calculated with CCONE code /6/. MT=112 (n,pa) reaction Calculated with CCONE code /6/. MT=115 (n,pd) reaction Calculated with CCONE code /6/. MT=117 (n,da) reaction Calculated with CCONE code /6/. MT=600-649 (n,p) reaction Calculated with CCONE code /6/. MT=650-699 (n,d) reaction Calculated with CCONE code /6/. MT=700-749 (n,t) reaction Calculated with CCONE code /6/. MT=750-799 (n,He3) reaction Calculated with CCONE code /6/. MT=800-849 (n,a) reaction Calculated with CCONE code /6/. MF= 8 Information on decay data MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 44 (n,n2p) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=108 (n,2a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MT=115 (n,pd) reaction Decay chain is given in the decay data file. MT=117 (n,da) reaction Decay chain is given in the decay data file. MF=10 Nuclide production cross sections MT=112 (n,pa) reaction Calculated with CCONE code /6/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /6/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda/7/ modified proton : global OMP, A.J.Koning and J.P.Delaroche/8/ deuteron: Y.Han et al./9/ triton : folding OMP, A.J.Koning and J.P.Delaroche/8/ He-3 : Y.Xu et al./10/ alpha : L.McFadden and G.R.Satchler/11/ modified * Level scheme of Zn-64 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.991560 2 + 2 1.799360 2 + 3 1.910320 0 + 4 2.306750 4 + 5 2.609460 0 + 6 2.736530 4 + 7 2.793700 2 + 8 2.979800 3 + 9 2.998590 3 - 10 3.005710 2 + 11 3.071200 2 + 12 3.077770 4 + 13 3.094590 3 + 14 3.186790 1 + 15 3.196800 2 + 16 3.205930 3 + 17 3.240000 0 + 18 3.261990 1 - 19 3.285000 1 - 20 3.297190 2 + 21 3.306880 4 + 22 3.321800 1 - 23 3.365960 1 + 24 3.369830 3 + 25 3.415000 5 + 26 3.425150 1 + 27 3.452300 2 + 28 3.458630 3 - 29 3.465000 5 - 30 3.500000 2 + 31 3.538800 2 + 32 3.546000 3 - 33 3.552400 4 + 34 3.586800 3 - 35 3.597220 2 + 36 3.602100 1 + 37 3.606500 4 + 38 3.620800 6 - ----------------------- * Level density parameters (Gilbert-Cameron model/12/) Energy dependent parameters of Mengoni-Nakajima/13/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Zn-65 10.054 1.488 0.541 0.988 -1.317 8.280 2.342 Zn-64 9.197 3.000 -0.590 1.335 -2.332 15.150 3.621 Zn-63 9.989 1.512 -1.134 1.115 -1.567 10.139 2.403 Cu-64 9.092 0.000 -0.258 1.143 -3.067 8.148 1.780 Cu-63 9.081 1.512 -0.792 1.256 -2.463 11.734 2.858 Cu-62 8.966 0.000 -1.687 1.330 -4.034 11.613 1.526 Cu-61 8.850 1.536 -2.336 1.339 -1.895 13.152 3.323 Ni-63 9.295 1.512 0.158 0.911 0.168 6.283 3.336 Ni-62 8.399 3.048 -0.767 1.331 -0.928 13.596 4.393 Ni-61 9.273 1.536 -1.253 1.146 -1.088 9.755 3.136 Ni-60 8.535 3.098 -2.246 1.460 -1.494 16.998 4.399 Ni-59 9.206 1.562 -3.082 1.348 -1.838 14.306 3.339 --------------------------------------------------------- * Gamma-ray strength functions for Zn-65 E1: hybrid model(GH)/14/ ER= 16.27 (MeV) EG= 5.36 (MeV) SIG= 37.88 (mb) ER= 19.06 (MeV) EG= 7.24 (MeV) SIG= 75.77 (mb) M1: standard lorentzian model(SLO) ER= 10.20 (MeV) EG= 4.00 (MeV) SIG= 1.61 (mb) E2: standard lorentzian model(SLO) ER= 15.67 (MeV) EG= 5.33 (MeV) SIG= 1.55 (mb) References 1) Garg,J.B. et al.: Phys. Rev. C23, 671 (1981a) 2) Garg,J.B. et al.: Phys. Rev. C23, 683 (1981b) 3) Julien,J. et al.: Nucl. Phys. A132, 129 (1969) 4) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006) 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese] 6) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 7) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 9) Y.Han et al., Phys. Rev. C 74,044615(2006) 10) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54, (2005) 11) L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 12) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965) 13) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 14) S. Goriely, Phys. Lett. B436, 10 (1998)