30-Zn- 65 JAEA EVAL-Feb21 N.Iwamoto DIST-DEC21 20210228 ----JENDL-5 MATERIAL 3028 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-03 Evaluated with CCONE code by N.Iwamoto 21-11 revised by O.Iwamoto (MF8/MT104) added 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only No resolved resonance parameters AP is assumed to be 6.7 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 7.27824E+01 Elastic 5.68582E+00 n,gamma 6.40240E+01 4.40032E+01 n,p 3.00113E-03 8.11390E+00 n,alpha 2.00075E+00 5.62201E+00 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT= 44 (n,n2p) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 93.1eV the cross section of 1/v shape was adopted. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. Below 93.1eV the cross section of 1/v shape was adopted. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. Below 93.1eV the cross section of 1/v shape was adopted. MT=108 (n,2a) cross section Calculated with CCONE code /1/. MT=111 (n,2p) cross section Calculated with CCONE code /1/. MT=112 (n,pa) cross section Calculated with CCONE code /1/. MT=115 (n,pd) cross section Calculated with CCONE code /1/. MT=116 (n,pt) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 44 (n,n2p) reaction Calculated with CCONE code /1/. MT=51-91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=108 (n,2a) reaction Calculated with CCONE code /1/. MT=111 (n,2p) reaction Calculated with CCONE code /1/. MT=112 (n,pa) reaction Calculated with CCONE code /1/. MT=115 (n,pd) reaction Calculated with CCONE code /1/. MT=116 (n,pt) reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT=4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT= 44 (n,n2p) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=108 (n,2a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MT=115 (n,pd) reaction Decay chain is given in the decay data file. MT=116 (n,pt) reaction Decay chain is given in the decay data file. MF=10 Nuclide production cross sections MT= 45 (n,npa) reaction Calculated with CCONE code /1/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al/3/ modified proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : L.McFadden and G.R.Satchler/7/ * Level scheme of Zn-65 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 5/2 - 1 0.053930 1/2 - 2 0.115130 3/2 - 3 0.206940 3/2 - 4 0.768700 5/2 - 5 0.864210 7/2 - 6 0.866920 1/2 - 7 0.909650 3/2 - 8 1.047390 5/2 - 9 1.062100 7/2 + 10 1.065510 9/2 + 11 1.252660 7/2 - 12 1.263420 9/2 - 13 1.343850 5/2 - 14 1.369080 5/2 + 15 1.469730 3/2 - 16 1.577050 3/2 - 17 1.588080 7/2 - 18 1.603000 7/2 + 19 1.779600 5/2 + 20 1.793500 5/2 - 21 1.907500 9/2 - 22 1.908000 1/2 + 23 1.941100 5/2 + 24 1.956000 5/2 - 25 1.957300 7/2 + 26 1.976000 5/2 + 27 2.052200 3/2 + 28 2.053800 13/2 + 29 2.081540 1/2 + 30 2.135200 9/2 + 31 2.137000 3/2 + 32 2.137700 11/2 + 33 2.202000 5/2 + 34 2.216000 5/2 + 35 2.248000 1/2 + 36 2.302100 7/2 - 37 2.310000 9/2 + 38 2.342000 3/2 - ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Zn-66 9.426 2.954 0.797 1.078 -0.398 10.643 3.882 Zn-65 10.054 1.488 0.541 0.988 -1.317 8.280 2.342 Zn-64 9.197 3.000 -0.590 1.335 -2.332 15.150 3.621 Cu-65 9.312 1.488 0.518 1.033 -1.125 8.238 3.143 Cu-64 9.092 0.000 -0.258 1.143 -3.067 8.148 1.780 Cu-63 9.081 1.512 -0.792 1.256 -2.463 11.734 2.858 Cu-62 8.966 0.000 -1.687 1.330 -4.034 11.613 1.526 Ni-64 9.197 3.000 0.531 0.993 0.848 9.013 4.584 Ni-63 9.295 1.512 0.158 0.911 0.168 6.283 3.336 Ni-62 8.399 3.048 -0.767 1.331 -0.928 13.596 4.393 Ni-61 9.273 1.536 -1.253 1.146 -1.088 9.755 3.136 Ni-60 8.535 3.098 -2.246 1.460 -1.494 16.998 4.399 --------------------------------------------------------- * Gamma-ray strength functions for Zn-66 E1: hybrid model(GH)/10/ ER= 17.96 (MeV) EG= 6.47 (MeV) SIG= 115.93 (mb) M1: standard lorentzian model(SLO) ER= 10.15 (MeV) EG= 4.00 (MeV) SIG= 1.57 (mb) E2: standard lorentzian model(SLO) ER= 15.59 (MeV) EG= 5.32 (MeV) SIG= 1.53 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 7) L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 8) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965) 9) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S. Goriely, Phys. Lett. B436, 10 (1998)