30-Zn- 67 JAEA EVAL-Mar21 N.Iwamoto DIST-DEC21 20210331 ----JENDL-5 MATERIAL 3034 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-03 Evaluated with CCONE code by N.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region: below 70 keV Resolved resonance parameters were taken from Agrawal et al. /1/, supplimented by the data of Julien et al. /2/ and Kim et al. /3/. The negative resonance was placed so as to reproduce the cross sections at thermal energy recommended by Mughabghab /4/. Unresolved resonance region : 70 keV - 180 keV The unresolved resonance paramters (URP) were determined by ASREP code /5/ so as to reproduce the evaluated total and capture cross sections. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 9.58375E+00 Elastic 2.11133E+00 n,gamma 7.47184E+00 2.42735E+01 n,alpha 1.59061E-04 2.57910E-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /6/. MT= 2 Elastic scattering cross section Calculated with CCONE code /6/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /6/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 41 (n,2np) cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /6/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /6/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /6/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /6/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /6/. MT=108 (n,2a) cross section Calculated with CCONE code /6/. MT=111 (n,2p) cross section Calculated with CCONE code /6/. MT=112 (n,pa) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /6/. MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 41 (n,2np) reaction Calculated with CCONE code /6/. MT=51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. MT=108 (n,2a) reaction Calculated with CCONE code /6/. MT=111 (n,2p) reaction Calculated with CCONE code /6/. MT=112 (n,pa) reaction Calculated with CCONE code /6/. MT=600-649 (n,p) reaction Calculated with CCONE code /6/. MT=650-699 (n,d) reaction Calculated with CCONE code /6/. MT=700-749 (n,t) reaction Calculated with CCONE code /6/. MT=750-799 (n,He3) reaction Calculated with CCONE code /6/. MT=800-849 (n,a) reaction Calculated with CCONE code /6/. MF= 8 Information on decay data MT=4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=108 (n,2a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. ------------------------------------------------------------------ nuclear model calculation with CCONE code /6/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./7/ modified proton : A.J.Koning and J.P.Delaroche/8/ modified deuteron: Y.Han et al./9/ triton : folding OMP, A.J.Koning and J.P.Delaroche/3/ He-3 : Y.Xu et al./5/ alpha : L.McFadden and G.R.Satchler/10/ * Level scheme of Zn-67 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 5/2 - 1 0.093310 1/2 - 2 0.184580 3/2 - 3 0.393530 3/2 - 4 0.604480 9/2 + 5 0.814770 7/2 - 6 0.870910 3/2 - 7 0.887700 5/2 - 8 0.979840 5/2 + 9 0.990000 1/2 - 10 1.060000 9/2 + 11 1.142810 1/2 - 12 1.363590 5/2 - 13 1.407000 1/2 + 14 1.446090 3/2 - 15 1.517140 9/2 - 16 1.543500 3/2 - 17 1.603680 7/2 + 18 1.640110 13/2 + 19 1.643000 9/2 + 20 1.656710 7/2 - 21 1.677530 1/2 + 22 1.686810 5/2 - 23 1.732650 11/2 + 24 1.780240 5/2 + 25 1.783160 5/2 + 26 1.800500 7/2 - 27 1.802000 1/2 + 28 1.807890 9/2 + 29 1.842810 3/2 - 30 1.875420 5/2 - 31 2.027190 7/2 + 32 2.065360 1/2 + 33 2.083120 7/2 - 34 2.092610 9/2 - 35 2.101810 3/2 - 36 2.110000 5/2 - 37 2.136730 9/2 - 38 2.158500 5/2 - 39 2.175290 7/2 - ----------------------- * Level density parameters (Gilbert-Cameron model/11/) Energy dependent parameters of Mengoni-Nakajima/12/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Zn-68 8.850 2.910 1.954 1.110 -0.871 10.740 3.726 Zn-67 9.463 1.466 1.847 0.999 -1.642 8.203 2.175 Zn-66 9.426 2.954 0.797 1.078 -0.398 10.643 3.882 Zn-65 10.054 1.488 0.541 0.988 -1.317 8.280 2.342 Cu-67 8.777 1.466 1.478 1.009 -0.934 7.572 3.522 Cu-66 8.560 0.000 0.915 1.026 -2.079 5.953 1.247 Cu-65 9.312 1.488 0.518 1.033 -1.125 8.238 3.143 Cu-64 9.092 0.000 -0.258 1.143 -3.067 8.148 1.780 Ni-66 9.426 2.954 1.337 0.842 1.570 7.295 4.125 Ni-65 9.064 1.488 1.229 0.885 0.031 6.076 2.906 Ni-64 9.197 3.000 0.531 0.993 0.848 9.013 4.584 Ni-63 9.295 1.512 0.158 0.911 0.168 6.283 3.336 Ni-62 8.399 3.048 -0.767 1.331 -0.928 13.596 4.393 --------------------------------------------------------- * Gamma-ray strength functions for Zn-68 E1: hybrid model(GH)/13/ ER= 17.84 (MeV) EG= 6.38 (MeV) SIG= 120.40 (mb) M1: standard lorentzian model(SLO) ER= 10.04 (MeV) EG= 4.00 (MeV) SIG= 1.51 (mb) E2: standard lorentzian model(SLO) ER= 15.43 (MeV) EG= 5.29 (MeV) SIG= 1.49 (mb) References #a Edition: Resonance Parameters and Thermal Cross Sections. #a Z=1-100", Elsevier Science (2006). 1) Agrawal,H.M. et al.: J. Phys., G18, 1069 (1992). 2) Julien,J. et al.: Nucl. Phys., A132, 129 (1969). 3) Kim,K.S. et al.: Zh. Eksperim. i Teor. Fiz., 49, 410 (1965). 4) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth 5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 6) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 9) Y.Han et al., Phys. Rev. C 74,044615(2006) 10) L.McFadden and G.R.Satchler, Nucl. Phys. 84, 177 (1966) 11) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965) 12) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 13) S. Goriely, Phys. Lett. B436, 10 (1998)