40-Zr- 92 EVAL-Nov18 ichihara DIST-DEC21 20200318 ----JENDL-5 MATERIAL 4031 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2018-11 Evaluated with CCONE code by ichihara 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 71 keV Resonance parameters were taken from JENDL-2. Evaluation for JENDL-2 was based on the measured data by Boldeman et al. /1/ Parameters of a negative resonance and effective scattering radius were adopted from the recommendation of Mughabghab et al./2/ Average radiation widths of 0.180 eV and 0.270 eV were assumed for s-wave and p-wave resonances, respectively. For JENDL-3.2, the parameters of the negative resonance were modified to reproduce the thermal elastic scattering cross section of 7.1 b of Zr-92 and 6.4 b/2/ of natural Zr. In JENDL-5, the resonance parameters below the neutron energy 40 keV were replaced with the data measured by Tagliente et al./3/ The radiative widths above 40 keV were revised using the capture kernels of Boldeman et al./1/ multiplied by the correction factor of 0.9833 suggested by Allen et al./4/ The recommended data of Mughabghab/5/ were adopted for the negative resonance. The average radiation width 0.24 eV was applied for the p-wave resonances./6/ Unresolved resonance region : 71 keV - 200 keV The unresolved resonance parameters were calculated using the asrep code/7/. The parameters should be used only for the self-shielding calculation. calculated 2200-m/s cross sections and res. integrals (barns) 2200 m/s res. integ. total 7.391 - elastic 7.264 - capture 0.1270 0.507 MF= 3 Neutron cross sections Below 71 keV, resonance parameters were given. Above the energy, cross sections were calculated with the CCONE code /8/. Details of computation are given in /9/. MT= 1 Total cross section Calculated with CCONE code /8/. MT= 2 Elastic scattering cross section Calculated with CCONE code /8/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /8/. MT= 16 (n,2n) cross section Calculated with CCONE code /8/. MT= 17 (n,3n) cross section Calculated with CCONE code /8/. MT= 22 (n,na) cross section Calculated with CCONE code /8/. MT= 28 (n,np) cross section Calculated with CCONE code /8/. MT= 32 (n,nd) cross section Calculated with CCONE code /8/. MT= 33 (n,nt) cross section Calculated with CCONE code /8/. MT=102 Capture cross section Calculated with CCONE code /8/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /8/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /8/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /8/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /8/. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /8/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /8/. MT= 17 (n,3n) reaction Calculated with CCONE code /8/. MT= 22 (n,na) reaction Calculated with CCONE code /8/. MT= 28 (n,np) reaction Calculated with CCONE code /8/. MT= 32 (n,nd) reaction Calculated with CCONE code /8/. MT= 33 (n,nt) reaction Calculated with CCONE code /8/. MT=51-91 (n,n') reaction Calculated with CCONE code /8/. MT=102 Capture reaction Calculated with CCONE code /8/. MT=600-649 (n,p) reaction Calculated with CCONE code /8/. MT=650-699 (n,d) reaction Calculated with CCONE code /8/. MT=700-749 (n,t) reaction Calculated with CCONE code /8/. MT=800-849 (n,a) reaction Calculated with CCONE code /8/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 33 (n,nt) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=107 (n,a) MF=10 Nuclide production cross sections MT= 28 (n,np) reaction Calculated with CCONE code /8/. MT= 32 (n,nd) reaction Calculated with CCONE code /8/. MT= 33 (n,nt) reaction Calculated with CCONE code /8/. MT=104 (n,d) reaction Calculated with CCONE code /8/. MT=105 (n,t) reaction Calculated with CCONE code /8/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /8/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./10/ deuteron: J.M.Lohr and W.Haeberli/11/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/12/ neutron : S.Kunieda et al./9,13/ proton : S.Kunieda et al./13/ triton : F.D.Becchetti Jr. and G.W.Greenlees/12/ * Level scheme of Zr-92 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.934510 2 + 2 1.382770 0 + 3 1.495460 4 + 4 1.847270 2 + 5 2.066650 2 + 6 2.182000 2 + 7 2.339660 3 - 8 2.398360 4 + 9 2.473400 2 - 10 2.486010 5 - 11 2.666000 2 - 12 2.743550 4 - 13 2.752000 3 - 14 2.819540 2 + ----------------------- * Level density parameters (Gilbert-Cameron model/14/) Energy dependent parameters of Mengoni-Nakajima/15/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Zr-93 12.414 1.244 0.476 0.795 -0.671 6.671 2.458 Zr-92 11.704 2.502 -0.006 0.851 0.532 8.230 2.820 Zr-91 11.890 1.258 -1.233 0.823 0.027 6.228 2.395 Zr-90 11.748 2.530 -1.956 0.791 1.946 6.578 3.309 Y-92 12.600 0.000 0.366 0.732 -1.458 4.487 0.310 Y-91 11.338 1.258 0.165 0.844 -0.514 6.650 1.547 Y-90 11.500 0.000 -1.297 0.709 -0.368 2.976 1.417 Sr-91 12.543 1.258 0.607 0.671 0.243 4.893 1.368 Sr-90 11.748 2.530 0.139 0.813 0.818 7.712 2.674 Sr-89 10.953 1.272 -0.952 0.857 0.118 6.194 2.079 Sr-88 11.473 2.558 -1.514 0.826 1.739 7.165 3.585 --------------------------------------------------------- * Gamma-ray strength functions for Zr-93 E1: standard lorentzian model(SLO) ER= 16.56 (MeV) EG= 5.54 (MeV) SIG= 188.66 (mb) M1: standard lorentzian model(SLO) ER= 9.05 (MeV) EG= 4.00 (MeV) SIG= 4.11 (mb) E2: standard lorentzian model(SLO) ER= 13.91 (MeV) EG= 4.99 (MeV) SIG= 2.05 (mb) References 1) Boldeman, J.W., et al.: Nucl. Phys., A269, 31 (1976). 2) Mughabghab, S.F., et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press, New York (1981). 3) Tagliente, G., et al.: Phys. Rev., C81, 055801 (2010). 4) Allen, B.J., et al.: Nucl. Sci. Eng., 82, 230 (1982). 5) Mughabghab, S.F.: "Atlas of Neutron Resonances, 6th Edition, Vol. 1", Elsevier, Amsterdam (2018). 6) Ichihara, A.: JAEA-Conf 2017-001, 103 (2018). 7) Kikuchi, Y., et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 8) Iwamoto, O.: J. Nucl. Sci. Technol., 44, 687 (2007). 9) Ichihara, A.: J. Nucl. Sci. Technol., 55, 1087 (2018). 10) Avrigeanu, V., et al.: Report OUNP-94-02 (1994) , Phys. Rev., C49, 2136 (1994). 11) Lohr, J.M. and Haeberli, W.: Nucl. Phys., A232, 381 (1974). 12) Becchetti Jr., F.D. and Greenlees, G.W.: Ann. Rept. J.H. Williams Lab., Univ. Minnesota (1969). 13) Kunieda, S., et al.: J. Nucl. Sci. Technol., 44, 838 (2007). 14) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446 (1965). 15) Mengoni, A. and Nakajima, Y.: J. Nucl. Sci. Technol., 31, 151 (1994).