40-Zr- 93 EVAL-Sep18 ichihara DIST-DEC21 20200318 ----JENDL-5 MATERIAL 4034 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2018-05 Evaluated with CCONE code by ichihara 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 6.8 keV In JENDL-4.0, resolved resonance parameters in JENDL-3.3 /1/ were adopted. Resonance energies, neutron widths and radiation widths were mainly taken from the measurement of Macklin/2/ up to 6.1 keV. Neutron widths not measured were determined from capture area data, and total and radiation widths of Macklin et al./3/ Average radiation widths were deduced to be 0.145 eV for s-wave resonances, and 0.250 eV for p-wave resonances. Total spin J of some resonances was tentatively estimated with a random number method. Neutron orbital angular momentum L of some resonances was estimated with a method of Bollinger and Thomas/4/. Scattering radius was based on the systematics of measured values for neighboring nuclides. A negative resonance was added so as to reproduce the thermal capture cross section given by Mughabghab et al./5/ In JENDL-5, the maximum of resonance energy was set to 6.8 keV. The negative resonance in JENDL-4.0 was removed to obtain the thermal capture cross section which accords with the measured value 0.76 +/- 0.13 b of Nakamura et al./6/ The resonance peaks for 4121, 4320 and 6641 eV were removed under the suggestion of Tagliente et al./7/ who assigned them as impurity components. The average radiation width was deduced to be 0.21 eV for the p-wave resonances./8/ Unresolved resonance region : 6.8 keV - 500 keV The unresolved resonance parameters were calculated using the ASREP code/9/. The parameters should be used only for the self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 6.539E+00 Elastic 5.849E+00 n,gamma 6.908E-01 1.758E+01 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections Below 6.8 keV, resonance parameters were given. Above the energy, cross sections were calculated with the CCONE code /10/. Details of computation are given in /11/. MT= 1 Total cross section Calculated with CCONE code /10/. MT= 2 Elastic scattering cross section Calculated with CCONE code /10/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /10/. MT= 16 (n,2n) cross section Calculated with CCONE code /10/. MT= 17 (n,3n) cross section Calculated with CCONE code /10/. MT= 22 (n,na) cross section Calculated with CCONE code /10/. MT= 24 (n,2na) cross section Calculated with CCONE code /10/. MT= 28 (n,np) cross section Calculated with CCONE code /10/. MT= 32 (n,nd) cross section Calculated with CCONE code /10/. MT= 33 (n,nt) cross section Calculated with CCONE code /10/. MT= 41 (n,2np) cross section Calculated with CCONE code /10/. MT=102 Capture cross section Calculated with CCONE code /10/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /10/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /10/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /10/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /10/. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /10/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /10/. MT= 17 (n,3n) reaction Calculated with CCONE code /10/. MT= 22 (n,na) reaction Calculated with CCONE code /10/. MT= 24 (n,2na) reaction Calculated with CCONE code /10/. MT= 28 (n,np) reaction Calculated with CCONE code /10/. MT= 32 (n,nd) reaction Calculated with CCONE code /10/. MT= 33 (n,nt) reaction Calculated with CCONE code /10/. MT= 41 (n,2np) reaction Calculated with CCONE code /10/. MT=51-91 (n,n') reaction Calculated with CCONE code /10/. MT=102 Capture reaction Calculated with CCONE code /10/. MT=600-649 (n,p) reaction Calculated with CCONE code /10/. MT=650-699 (n,d) reaction Calculated with CCONE code /10/. MT=700-749 (n,t) reaction Calculated with CCONE code /10/. MT=800-849 (n,a) reaction Calculated with CCONE code /10/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 24 (n,2na) MT= 28 (n,np) MT= 32 (n,nd) MT= 33 (n,nt) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=107 (n,a) MF=10 Nuclide production cross sections MT= 32 (n,nd) reaction Calculated with CCONE code /10/. MT= 33 (n,nt) reaction Calculated with CCONE code /10/. MT= 41 (n,2np) reaction Calculated with CCONE code /10/. MT=105 (n,t) reaction Calculated with CCONE code /10/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /10/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./12/ deuteron: J.M.Lohr and W.Haeberli/13/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/14/ neutron : S.Kunieda et al./11,15/ proton : S.Kunieda et al./15/ triton : F.D.Becchetti Jr. and G.W.Greenlees/14/ * Level scheme of Zr-93 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 5/2 + 1 0.266820 3/2 + 2 0.947090 1/2 + 3 0.949800 9/2 + 4 1.018000 1/2 + 5 1.168620 1/2 + 6 1.222000 1/2 + 7 1.425270 3/2 + 8 1.450420 1/2 + 9 1.463000 9/2 + 10 1.470110 1/2 + 11 1.598000 7/2 + 12 1.642000 5/2 + 13 1.735000 5/2 + 14 1.909510 1/2 + 15 1.917900 3/2 + 16 2.025000 11/2 - 17 2.040000 7/2 + 18 2.047000 5/2 + 19 2.075000 9/2 + 20 2.078000 9/2 + 21 2.094640 1/2 + 22 2.184580 1/2 + 23 2.276000 1/2 + 24 2.284300 13/2 + 25 2.302000 9/2 + 26 2.363000 11/2 - 27 2.374600 11/2 - 28 2.391000 1/2 + 29 2.457500 1/2 + ----------------------- * Level density parameters (Gilbert-Cameron model/16/) Energy dependent parameters of Mengoni-Nakajima/17/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Zr-94 12.185 2.475 1.414 0.767 0.469 7.586 3.219 Zr-93 12.414 1.244 0.476 0.795 -0.671 6.671 2.458 Zr-92 11.704 2.502 -0.006 0.851 0.532 8.230 2.820 Y-93 11.549 1.244 1.580 0.750 -0.351 5.778 1.309 Y-92 12.600 0.000 0.366 0.732 -1.458 4.487 0.310 Y-91 11.338 1.258 0.165 0.844 -0.514 6.650 1.547 Sr-92 11.967 2.502 1.541 0.747 0.736 7.218 2.088 Sr-91 12.543 1.258 0.607 0.671 0.243 4.893 1.368 Sr-90 11.748 2.530 0.139 0.813 0.818 7.712 2.674 Sr-89 10.953 1.272 -0.952 0.857 0.118 6.194 2.079 Sr-88 11.473 2.558 -1.514 0.826 1.739 7.165 3.585 --------------------------------------------------------- * Gamma-ray strength functions for Zr-94 E1: standard lorentzian model(SLO) ER= 16.52 (MeV) EG= 5.51 (MeV) SIG= 191.09 (mb) M1: standard lorentzian model(SLO) ER= 9.02 (MeV) EG= 4.00 (MeV) SIG= 4.05 (mb) E2: standard lorentzian model(SLO) ER= 13.86 (MeV) EG= 4.98 (MeV) SIG= 2.03 (mb) References 1) Shibata, K., et al.: J. Nucl. Sci. Technol., 39, 1125 (2002). 2) Macklin, R.L., et al.: Nucl. Sci. Eng., 92, 525 (1986). 3) Macklin, R.L.: Astrophys. Space Sci., 115, 71 (1985). 4) Bollinger, L.M. and Thomas, G.E.: Phys. Rev., 171, 1293 (1968). 5) Mughabghab, S.F., et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press, New York (1981). 6) Nakamura, S., et al.: J. Nucl. Sci. Technol., 44, 21 (2007). 7) Tagliente, G., et al.: Phys. Rev., C87, 014622 (2013). 8) Ichihara, A.: JAEA-Conf 2017-001, 103 (2018). 9) Kikuchi, Y., et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 10) Iwamoto, O.: J. Nucl. Sci. Technol., 44, 687 (2007). 11) Ichihara, A.: J. Nucl. Sci. Technol., 55, 1087 (2018). 12) Avrigeanu, V., et al.: Report OUNP-94-02 (1994) , Phys. Rev., C49, 2136 (1994). 13) Lohr, J.M. and Haeberli, W.: Nucl. Phys., A232, 381 (1974). 14) Becchetti Jr., F.D. and Greenlees, G.W.: Ann. Rept. J.H. Williams Lab., Univ. Minnesota (1969). 15) Kunieda, S., et al.: J. Nucl. Sci. Technol., 44, 838 (2007). 16) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446 (1965). 17) Mengoni, A. and Nakajima, Y.: J. Nucl. Sci. Technol., 31, 151 (1994).