40-Zr- 94 EVAL-Sep18 ichihara DIST-DEC21 20200318 ----JENDL-5 MATERIAL 4037 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2018-05 Evaluated with CCONE code by ichihara 2020-10 Energies of discrete primary photons were corrected. 2021-10 Themal capture cross section adjusted by N.Iwamoto 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resoannce parameters Resolved resonance region: below 59 keV In JENDL-3.3, parameters were determined on the basis of measured data by Boldeman et al./1/ A negative resonance was added to reproduce the capture cross section of 0.0499 barn and the elastic scattering cross section of 6.1 barn at 0.0253 eV/2/. Average radiation widths of 0.090 eV and 0.175 eV were adopted to s-wave and p-wave resonances, respectively. In JENDL-4.0, the 2243-eV resonance was replaced by the 2239-eV resonance measured by Leinweber et al./3/ In JENDL-5, the Reich-Moore (RM) format was employed. /4/ The resonance parameters below 59 keV were replaced with the data measured by Tagliente et al./4/ The parameters in the negative and the first (2241 eV) resonances were modified with the recommended values of Mughabghab/5/ to reproduce the thermal scattering cross section of 8.59 +/- 0.41 b and the capture cross section of 0.49 b/6/. The average radiation width of 0.16 eV was applied for the p-wave resonances. Thermal capture cross section was reproduced by adjusting the parameter of negative resonance. Unresolved resonance region : 59 keV - 200 keV The unresolved resonance parameters were calculated using the asrep code/7/. The parameters should be used only for the self-shielding calculation. calculated 2200-m/s cross sections and res. integrals (barns) 2200 m/s res. integ. total 8.782 - elastic 8.708 - capture 0.05029 0.255 MF= 3 Neutron cross sections Below 59 keV, resonance parameters were given. Above the energy, cross sections were calculated with the CCONE code /8/. Details of computation are given in /9/. MT= 1 Total cross section Calculated with CCONE code /8/. MT= 2 Elastic scattering cross section Calculated with CCONE code /8/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /8/. MT= 16 (n,2n) cross section Calculated with CCONE code /8/. MT= 17 (n,3n) cross section Calculated with CCONE code /8/. MT= 22 (n,na) cross section Calculated with CCONE code /8/. MT= 24 (n,2na) cross section Calculated with CCONE code /8/. MT= 28 (n,np) cross section Calculated with CCONE code /8/. MT= 32 (n,nd) cross section Calculated with CCONE code /8/. MT=102 Capture cross section Calculated with CCONE code /8/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /8/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /8/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /8/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /8/. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /8/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /8/. MT= 17 (n,3n) reaction Calculated with CCONE code /8/. MT= 22 (n,na) reaction Calculated with CCONE code /8/. MT= 24 (n,2na) reaction Calculated with CCONE code /8/. MT= 28 (n,np) reaction Calculated with CCONE code /8/. MT= 32 (n,nd) reaction Calculated with CCONE code /8/. MT=51-91 (n,n') reaction Calculated with CCONE code /8/. MT=102 Capture reaction Calculated with CCONE code /8/. MT=600-649 (n,p) reaction Calculated with CCONE code /8/. MT=650-699 (n,d) reaction Calculated with CCONE code /8/. MT=700-749 (n,t) reaction Calculated with CCONE code /8/. MT=800-849 (n,a) reaction Calculated with CCONE code /8/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 24 (n,2na) MT= 28 (n,np) MT= 32 (n,nd) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=107 (n,a) ------------------------------------------------------------------ nuclear model calculation with CCONE code /8/ ------------------------------------------------------------------ * Optical model potentials alpha : V.Avrigeanu et al./10/ deuteron: J.M.Lohr and W.Haeberli/11/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/12/ neutron : S.Kunieda et al./9,13/ proton : S.Kunieda et al./13/ triton : F.D.Becchetti Jr. and G.W.Greenlees/12/ * Level scheme of Zr-94 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.918750 2 + 2 1.300190 0 + 3 1.469620 4 + 4 1.671410 2 + 5 2.057630 3 - 6 2.151310 2 + ----------------------- * Level density parameters (Gilbert-Cameron model/14/) Energy dependent parameters of Mengoni-Nakajima/15/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Zr-95 11.637 1.231 1.508 0.728 -0.039 5.469 2.372 Zr-94 12.185 2.475 1.414 0.767 0.469 7.586 2.151 Zr-93 12.414 1.244 0.476 0.795 -0.671 6.671 2.458 Zr-92 11.704 2.502 -0.006 0.851 0.532 8.230 2.820 Y-94 13.100 0.000 1.472 0.385 0.207 0.774 0.724 Y-93 11.549 1.244 1.580 0.750 -0.351 5.778 1.309 Y-92 12.600 0.000 0.366 0.732 -1.458 4.487 0.310 Sr-93 12.762 1.244 1.857 0.620 0.180 4.623 1.238 Sr-92 11.967 2.502 1.541 0.747 0.736 7.218 2.088 Sr-91 12.543 1.258 0.607 0.671 0.243 4.893 1.368 Sr-90 11.748 2.530 0.139 0.813 0.818 7.712 2.674 Sr-89 10.953 1.272 -0.952 0.857 0.118 6.194 2.079 --------------------------------------------------------- * Gamma-ray strength functions for Zr-95 E1: standard lorentzian model(SLO) ER= 14.71 (MeV) EG= 4.42 (MeV) SIG= 64.50 (mb) ER= 17.53 (MeV) EG= 6.17 (MeV) SIG= 129.00 (mb) M1: standard lorentzian model(SLO) ER= 8.99 (MeV) EG= 4.00 (MeV) SIG= 4.02 (mb) E2: standard lorentzian model(SLO) ER= 13.81 (MeV) EG= 4.97 (MeV) SIG= 2.02 (mb) References 1) Boldeman, J.W., et al.: Nucl. Phys., A269, 31 (1976). 2) Mughabghab, S.F., et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press, New York (1981). 3) Leinweber, G., et al.: Nucl. Sci. Eng., 134, 50 (2000). 4) Tagliente, G., et al.: Phys. Rev., C84, 015801 (2011). 5) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier, Amsterdam (2006). 6) Ichihara, A.: JAEA-Conf 2017-001, 103 (2018). 7) Kikuchi, Y., et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 8) Iwamoto, O.: J. Nucl. Sci. Technol., 44, 687 (2007). 9) Ichihara, A.: J. Nucl. Sci. Technol., 55, 1087 (2018). 10) Avrigeanu, V., et al.: Report OUNP-94-02 (1994) , Phys. Rev., C49, 2136 (1994). 11) Lohr, J.M. and Haeberli, W.: Nucl. Phys., A232, 381 (1974). 12) Becchetti Jr., F.D. and Greenlees, G.W.: Ann. Rept. J.H. Williams Lab., Univ. Minnesota (1969). 13) Kunieda, S., et al.: J. Nucl. Sci. Technol., 44, 838 (2007). 14) Gilbert, A. and Cameron, A.G.W.: Can. J. Phys., 43, 1446 (1965). 15) Mengoni, A. and Nakajima, Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 1 451 345 1