41-Nb- 91 EVAL-Jan14 K.Shibata DIST-DEC21 20200318 ----JENDL-5 MATERIAL 4119 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2014-01 Evaluated with CCONE code by K.Shibata for JENDL/AD-2017 2018-09 Compiled by A.Ichihara for JENDL-5 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Unresolved resonance region : 80 eV - 300 keV The unresolved resonance parameters were calculated using the ASREP code/1/. The parameters should be used only for the self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 7.492E+00 Elastic 5.672E+00 n,gamma 1.799E+00 1.595E+01 n,p 1.951E-03 5.296E-02 n,a 1.191E-11 4.295E-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. MT= 2 Elastic scattering cross section Calculated with CCONE code /2/. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT=102 Capture reaction Calculated with CCONE code /2/. MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /2/. MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=105 (n,t) reaction Calculated with CCONE code /2/. MT=106 (n,He3) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/3/ deuteron: J.M.Lohr and W.Haeberli/4/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/5/ neutron : S. Kunieda et al./6/ proton : A.J.Koning and J.P.Delaroche/7/ triton : F.D.Becchetti Jr. and G.W.Greenlees/5/ * Level scheme of Nb-91 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 9/2 + 1 0.104600 1/2 - 2 1.040000 5/2 + 3 1.186880 5/2 - 4 1.312720 3/2 - 5 1.580980 7/2 + 6 1.612660 3/2 - 7 1.637010 9/2 + 8 1.790620 9/2 - 9 1.844920 5/2 - 10 1.885000 9/2 + 11 1.963110 5/2 + 12 1.984240 13/2 - 13 2.034350 17/2 - 14 2.065000 11/2 + 15 2.120840 7/2 - 16 2.170000 9/2 + 17 2.275000 5/2 + 18 2.290790 13/2 + 19 2.324540 5/2 - 20 2.330030 11/2 + 21 2.345360 3/2 - 22 2.390010 3/2 + 23 2.413480 11/2 - 24 2.531200 11/2 - 25 2.579550 5/2 + 26 2.612600 7/2 - 27 2.631970 9/2 - 28 2.660190 15/2 - ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Nb-92 12.322 0.000 -1.403 0.833 -1.451 5.392 1.832 Nb-91 12.213 1.258 -1.932 0.890 -0.397 7.453 2.660 Nb-90 12.104 0.000 -0.985 0.722 -0.660 3.610 1.880 Zr-91 12.213 1.258 -1.227 0.783 0.203 5.781 3.167 Zr-90 12.104 2.530 -1.949 0.727 2.212 5.832 4.828 Zr-89 11.995 1.272 -0.588 0.792 -0.059 6.038 2.890 Y-89 11.995 1.272 -1.859 0.833 0.204 6.242 3.516 Y-88 11.886 0.000 -0.511 0.713 -0.704 3.534 1.761 Y-87 11.777 1.287 0.684 0.852 -1.122 7.304 2.202 --------------------------------------------------------- * Gamma-ray strength functions for Nb-92 E1: generalized lorentzian model(GLO)/10/ ER= 16.60 (MeV) EG= 5.57 (MeV) SIG= 187.18 (mb) M1: standard lorentzian model(SLO) ER= 9.08 (MeV) EG= 4.00 (MeV) SIG= 0.77 (mb) E2: standard lorentzian model(SLO) ER= 13.96 (MeV) EG= 5.01 (MeV) SIG= 2.17 (mb) References 1) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 4) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 5) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 6) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 7) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 8) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 9) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 10) J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).