43-Tc- 95MJAEA EVAL-Sep21 N.Iwamoto DIST-DEC21 20210920 ----JENDL-5 MATERIAL 4320 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-10 Evaluated with CCONE code by N.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 6.41 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 8.34522E+00 Elastic 5.19516E+00 Inelas 3.92194E-04 2.03341E-02 n,gamma 2.96604E+00 4.20916E+01 n,p 5.71811E-02 8.62107E-01 n,alpha 6.69531E-05 9.77558E-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT= 44 (n,n2p) cross section Calculated with CCONE code /1/. MT= 45 (n,npa) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 19.55 eV the 1/v cross section was assumed. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MT=108 (n,2a) cross section Calculated with CCONE code /1/. MT=111 (n,2p) cross section Calculated with CCONE code /1/. MT=112 (n,pa) cross section Calculated with CCONE code /1/. MT=115 (n,pd) cross section Calculated with CCONE code /1/. MT=117 (n,da) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 44 (n,n2p) reaction Calculated with CCONE code /1/. MT= 45 (n,npa) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=108 (n,2a) reaction Calculated with CCONE code /1/. MT=111 (n,2p) reaction Calculated with CCONE code /1/. MT=112 (n,pa) reaction Calculated with CCONE code /1/. MT=115 (n,pd) reaction Calculated with CCONE code /1/. MT=117 (n,da) reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT= 44 (n,n2p) reaction Decay chain is given in the decay data file. MT= 45 (n,npa) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=108 (n,2a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MT=115 (n,pd) reaction Decay chain is given in the decay data file. MT=117 (n,da) reaction Decay chain is given in the decay data file. MF= 9 Isomeric branching ratios MT==102 Capture reaction Calculated with CCONE code /1/. MT=107 (n,a) reaction Calculated with CCONE code /1/. MF=10 Nuclide production reactions MT= 4 (n,n') reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 44 (n,n2p) reaction Calculated with CCONE code /1/. MT= 45 (n,npa) reaction Calculated with CCONE code /1/. MT=105 (n,t) reaction Calculated with CCONE code /1/. MT=106 (n,He3) reaction Calculated with CCONE code /1/. MT=111 (n,2p) reaction Calculated with CCONE code /1/. MT=115 (n,pd) reaction Calculated with CCONE code /1/. MT=117 (n,da) reaction Calculated with CCONE code /1/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : M.Avrigeanu and V.Avrigeanu/7/ * Level scheme of Tc-95 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 9/2 + 1 0.038910 1/2 - 2 0.336410 7/2 + 3 0.626860 5/2 + 4 0.646550 3/2 - 5 0.667820 5/2 - 6 0.882230 13/2 + 7 0.927810 3/2 + 8 0.956990 11/2 + 9 0.980000 3/2 + 10 1.033870 1/2 + 11 1.084970 5/2 + 12 1.178600 7/2 + 13 1.201000 3/2 - 14 1.213130 9/2 + 15 1.214550 9/2 - 16 1.275920 3/2 + 17 1.281490 7/2 - 18 1.307200 11/2 + 19 1.407540 7/2 - 20 1.416410 5/2 - 21 1.433250 5/2 + 22 1.515250 17/2 + 23 1.549460 15/2 + 24 1.618530 5/2 - 25 1.632030 11/2 - 26 1.639430 3/2 - 27 1.691310 7/2 + 28 1.694530 7/2 - 29 1.702110 13/2 - 30 1.733000 3/2 - 31 1.747020 5/2 + 32 1.785310 7/2 + ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Tc-96 12.755 0.000 -0.170 0.874 -2.764 6.903 1.255 Tc-95 12.647 1.231 -0.957 0.917 -1.538 8.670 1.785 Tc-94 12.539 0.000 -2.307 0.675 -0.024 2.651 2.504 Tc-93 12.431 1.244 -3.075 0.987 -0.842 9.428 2.431 Mo-95 12.723 1.231 0.093 0.812 -0.947 7.043 1.796 Mo-94 12.539 2.475 -0.716 0.906 -0.233 9.662 3.793 Mo-93 12.430 1.244 -1.846 0.909 -0.778 8.048 3.510 Mo-92 12.322 2.502 -2.676 0.945 0.676 9.704 4.116 Nb-94 11.887 0.000 0.581 0.804 -1.863 5.260 1.731 Nb-93 12.431 1.244 0.104 0.840 -1.094 7.355 2.507 Nb-92 12.322 0.000 -1.408 0.763 -0.863 4.205 2.335 Nb-91 12.213 1.258 -1.938 0.849 -0.007 6.653 2.793 Nb-90 12.104 0.000 -0.990 0.683 -0.402 3.055 1.972 --------------------------------------------------------- * Gamma-ray strength functions for Tc-96 E1: hybrid model(GH)/10/ ER= 15.15 (MeV) EG= 4.67 (MeV) SIG= 66.43 (mb) ER= 17.17 (MeV) EG= 5.93 (MeV) SIG= 132.87 (mb) M1: standard lorentzian model(SLO) ER= 8.95 (MeV) EG= 4.00 (MeV) SIG= 1.11 (mb) E2: standard lorentzian model(SLO) ER= 13.76 (MeV) EG= 4.96 (MeV) SIG= 2.31 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) M.Avrigeanu and V.Avrigeanu, Phys. Rev. C82, 014606 (2010) 8) A.Gilbert and A.G.W.Cameron, Can. J. Phys, 43, 1446 (1965) 9) A.Mengoni and Y.Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S.Goriely, Phys. Lett. B436, 10 (1998)