43-Tc- 99 JAEA EVAL-Jan11 N.Iwamoto,K.Furutaka JNST 49,244 (2012) DIST-DEC21 20130626 ----JENDL-5 MATERIAL 4331 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 11-01 The resolved resonance parameters were evaluated by K.Furutaka. The data above the resolved resonance region were evaluated /1/ and compiled by N.Iwamoto. 20-10 Energies of discrete primary photons were corrected. 21-10 JENDL-5b3 revised by N.Iwamoto (MF2,MT151) revised (MF3/MT1,2,4,103-107) recalculated (MF8,MT4-107) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF = 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 6.0 keV All the resolved resonance parameters were brought unmodified from JENDL-3.3 except for the negative-energy one : in JENDL-3.3/2/, resonance parameters obtained by Gunsing et al./3/ were adopted. They analyzed their transmission data with REFIT code, and obtaind the parameters up to 10 keV. The upper boundary of the resolved resonance region was set to 6 keV in this file as in JENDL-3.3, because the capture cross section calculated from their parameters were smaller than experimental data above the energy. Neutron width of the negative-energy resonance was slightly adjusted so as to reproduce the value of capture cross section for thermal neutrons adopted in this file. The adopted value is 23.6 b, which is the weighted average of the cross sections reported by Molnar et al./4/ and Furutaka et al./5/ deduced from emission cross sections of 540- and 591-keV decay gamma rays in Ru-100 using the recent gamma-ray emission probabilities for the gamma rays/6/, and the corresponding values reported by Harada et al./7/ recalculated with the new emission probabilities. The scattering radius of 6.7 fm was adopted. In JENDL-5 the resonance parameters below 540 eV was replaced with those analyzed by REFIT, based on the data measured at J-PARC MLF ANNRI/8/. Unresolved resonance region : 6.0 keV - 141.94 keV The unresolved resonance paramters (URP) were determined by ASREP code /9/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code CCOM /10/ and CCONE /11/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.84455E+01 Elastic 4.66513E+00 n,gamma 2.37804E+01 3.26091E+02 n,alpha 2.09945E-09 1.79414E-08 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /11/. MT= 16 (n,2n) cross section Calculated with CCONE code /11/. MT= 17 (n,3n) cross section Calculated with CCONE code /11/. MT= 22 (n,na) cross section Calculated with CCONE code /11/. MT= 24 (n,2na) cross section Calculated with CCONE code /11/. MT= 28 (n,np) cross section Calculated with CCONE code /11/. MT= 32 (n,nd) cross section Calculated with CCONE code /11/. MT= 33 (n,nt) cross section Calculated with CCONE code /11/. MT= 41 (n,2np) cross section Calculated with CCONE code /11/. MT= 51-91 (n,n') cross section Calculated with CCONE code /11/. MT=102 Capture cross section Calculated with CCONE code /11/. MT=103 (n,p) cross section Calculated with CCONE code /11/. MT=104 (n,d) cross section Calculated with CCONE code /11/. MT=105 (n,t) cross section Calculated with CCONE code /11/. MT=106 (n,He3) cross section Calculated with CCONE code /11/. MT=107 (n,a) cross section Calculated with CCONE code /11/. MT=600-649 (n,p) cross section Calculated with CCONE code /11/. MT=650-699 (n,d) cross section Calculated with CCONE code /11/. MT=700-749 (n,t) cross section Calculated with CCONE code /11/. MT=750-799 (n,He3) cross section Calculated with CCONE code /11/. MT=800-849 (n,a) cross section Calculated with CCONE code /11/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /11/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /11/. MT= 17 (n,3n) reaction Calculated with CCONE code /11/. MT= 22 (n,na) reaction Calculated with CCONE code /11/. MT= 24 (n,2na) reaction Calculated with CCONE code /11/. MT= 28 (n,np) reaction Calculated with CCONE code /11/. MT= 32 (n,nd) reaction Calculated with CCONE code /11/. MT= 33 (n,nt) reaction Calculated with CCONE code /11/. MT= 41 (n,2np) reaction Calculated with CCONE code /11/. MT= 51-91 (n,n') reaction Calculated with CCONE code /11/. MT=102 Capture reaction Calculated with CCONE code /11/. MT=600-649 (n,p) reaction Calculated with CCONE code /11/. MT=650-699 (n,d) reaction Calculated with CCONE code /11/. MT=700-749 (n,t) reaction Calculated with CCONE code /11/. MT=750-799 (n,He3) reaction Calculated with CCONE code /11/. MT=800-849 (n,a) reaction Calculated with CCONE code /11/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. ***************************************************************** Nuclear Model Calculation with CCONE code /11/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,12,15 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./12/ (+) proton omp: F.G.Perey/13/ (+) deuteron omp: Lohr,J.M. and Haeberli,W./14/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./15/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./15/ alpha omp: McFadden,L. and Satchler,G.R./16/ (+) (+) omp parameters were modified. * DWBA calculation levels: 2 (see Table 1) 2) Two-component exciton model/17/ * Global parametrization of Koning-Duijvestijn/18/ was used. * Gamma emission channel/19/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/20/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/21/. Parameters are shown in Table 2. * Gamma-ray strength function of standard Lorentzian form was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Tc-99 --------------------------------- No. Ex(MeV) J PI, DWBA: beta --------------------------------- 0 0.00000 9/2 + * 1 0.14051 7/2 + 2 0.14268 1/2 - 0.14 3 0.18109 5/2 + 4 0.50910 3/2 - 5 0.53444 3/2 + 6 0.53689 7/2 + 7 0.61237 5/2 - 8 0.62553 9/2 + 9 0.65277 9/2 - 10 0.67148 3/2 - 11 0.71941 7/2 + 12 0.72676 11/2 + * 13 0.73921 7/2 + 14 0.76178 5/2 + 15 0.76195 13/2 + * 16 0.88426 5/2 - 17 0.92058 1/2 + 18 0.98617 7/2 - 19 1.00407 3/2 - 20 1.01746 5/2 + 21 1.01976 7/2 + 22 1.07223 7/2 + 23 1.08146 11/2 + 24 1.12740 7/2 + 25 1.12910 3/2 - 26 1.13504 5/2 - 27 1.14185 3/2 + 28 1.14943 9/2 + 29 1.17205 3/2 + 30 1.17648 9/2 - 31 1.19889 3/2 - 32 1.20346 9/2 + 33 1.20500 3/2 - 34 1.20726 7/2 - 35 1.24378 7/2 + 36 1.26869 11/2 + 37 1.30628 7/2 + 38 1.30911 5/2 + 39 1.32074 3/2 - 40 1.32940 7/2 - --------------------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Tc-100 13.2370 0.0000 3.0259 0.6687 -2.0222 4.5730 Tc- 99 12.1770 1.2060 2.4797 0.8425 -2.0893 7.8436 Tc- 98 12.5751 0.0000 1.5956 0.7983 -2.6101 5.9161 Tc- 97 11.9681 1.2184 0.9081 0.9536 -2.5876 9.3014 Mo- 99 13.0000 1.2060 3.3778 0.7199 -1.4264 6.5480 Mo- 98 12.8000 2.4244 2.4534 0.7458 -0.0616 7.8396 Mo- 97 12.6000 1.2184 1.6999 0.7682 -1.1153 6.6776 Mo- 96 12.7000 2.4495 1.0258 0.8164 -0.2012 8.5991 Nb- 98 9.1000 0.0000 3.1449 0.7866 -1.0729 3.9215 Nb- 97 11.9681 1.2184 2.7416 0.5954 0.4041 4.1701 Nb- 96 12.0000 0.0000 1.8644 0.5346 -0.2487 2.0473 Nb- 95 11.7587 1.2312 1.7245 0.7543 -0.5446 5.9847 Nb- 94 12.0700 0.0000 0.5858 0.7972 -1.8999 5.2767 -------------------------------------------------------- Table 3. Gamma-ray strength function for Tc-100 -------------------------------------------------------- * E1: ER = 15.80 (MeV) EG = 5.00 (MeV) SIG = 190.00 (mb) ER = 6.00 (MeV) EG = 2.00 (MeV) SIG = 4.00 (mb) ER = 1.00 (MeV) EG = 2.50 (MeV) SIG = 0.25 (mb) * M1: ER = 8.83 (MeV) EG = 4.00 (MeV) SIG = 4.82 (mb) * E2: ER = 13.57 (MeV) EG = 4.91 (MeV) SIG = 2.24 (mb) -------------------------------------------------------- References 1) Iwamoto N.: J. Nucl. Sci. Technol., 49, 244 (2012). 2) Shibata K. et al.: J. Nucl. Sci. Technol., 39, 1125 (2002). 3) Gunsing F., et al.: Phys. Rev., C61, 054608 (2000). 4) Molnar G., et al.: Radiochim. Acta 90, 479 (2002). 5) Furutaka K. et al.: J. Nucl. Sci. Technol., 41, 1033 (2004). 6) Furutaka K. et al.: J. Nucl. Sci. Technol., 38, 1035 (2001). 7) Harada H. et al.: J. Nucl. Sci. Technol., 32, 395 (1995). 8) Kababuchi,T. et al.: EPJ Web of Conferences, 146, 11050 (2017). 9) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 10) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003). 11) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 12) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 13) F.G.Perey: Phys. Rev. 131,745 (1963). 14) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 15) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 16) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 17) Kalbach,C.: Phys. Rev. C33, 818 (1986). 18) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 19) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 20) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 21) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994).