44-Ru-105 JAEA EVAL-JUL12 K.Shibata JNST 50, 1177 (2013) DIST-DEC21 20180517 ----JENDL-5 MATERIAL 4452 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 12-07 The fast neutron cross sections were re-evaluated by K. Shibata (JAEA) /1/ using the POD code. 18-05 Only decay data added by K.Shibata. 21-11 revised by O.Iwamoto (MF8/MT4) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance parameters are given. The 1/v-shped capture cross section is assumed below 12 eV. At 0.0253 eV, the cross section was normalized to the value of 0.39 b. Constant elastic scattering cross sections of 5.31 b were given below 12 eV. Unresolved resonance region: 12 eV - 120 keV The parameters were obtained by fitting to the total and capture cross sections calculated from POD /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 5.7313E+00 Elastic 5.3362E+00 n,gamma 3.9018E-01 1.1742E+02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with POD code /2/. MT= 2 Elastic scattering cross section The cross section was obtaned by subtracting the non-elastic cross section from the total cross section. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT= 4,51-91 (n,n') cross section Calculated with POD code /2/. MT= 16 (n,2n) cross section Calculated with POD code /2/. MT= 17 (n,3n) cross section Calculated with POD code /2/. MT= 22 (n,na) cross section Calculated with POD code /2/. MT= 28 (n,np) cross section Calculated with POD code /2/. MT= 32 (n,nd) cross section Calculated with POD code /2/. MT=102 Capture cross section Calculated with POD code /2/. MT=103 (n,p) cross section Calculated with POD code /2/. MT=104 (n,d) cross section Calculated with POD code /2/. MT=105 (n,t) cross section Calculated with POD code /2/. MT=106 (n,He3) cross section Calculated with POD code /2/. MT=107 (n,a) cross section Calculated with POD code /2/. MT=203 (n,xp) cross section Calculated with POD code /2/. MT=204 (n,xd) cross section Calculated with POD code /2/. MT=205 (n,xt) cross section Calculated with POD code /2/. MT=206 (n,xHe3) cross section Calculated with POD code /2/. MT=207 (n,xa) cross section Calculated with POD code /2/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with POD code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Neutron spectra calculated with POD/2/. MT= 17 (n,3n) reaction Neutron spectra calculated with POD/2/. MT= 22 (n,na) reaction Neutron spectra calculated with POD/2/. MT= 28 (n,np) reaction Neutron spectra calculated with POD/2/. MT= 32 (n,nd) reaction Neutron spectra calculated with POD/2/. MT= 51 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 52 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 53 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 54 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 55 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 56 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 57 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 58 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 59 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 60 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 61 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 62 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 63 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 64 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 65 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 66 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 67 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 68 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 69 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 70 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 71 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 72 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 73 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 74 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 75 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 76 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 77 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 78 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 79 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 80 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 81 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 82 (n,n') reaction Neutron angular distributions calculated with POD/2/. MT= 91 (n,n') reaction Neutron spectra calculated with POD/2/. MT= 203 (n,xp) reaction Proton spectra calculated with POD/2/. MT= 204 (n,xd) reaction Deuteron spectra calculated with POD/2/. MT= 205 (n,xt) reaction Triton spectra calculated with POD/2/. MT= 206 (n,xHe3) reaction He3 spectra calculated with POD/2/. MT= 207 (n,xa) reaction Alpha spectra calculated with POD/2/. MF= 8 Information on decay data MT= 16 (n,2n) reaction MT= 17 (n,3n) reaction MT= 22 (n,na) reaction MT= 28 (n,np) reaction MT= 32 (n,nd) reaction MT=102 (n,g) reaction MT=103 (n,p) reaction MT=104 (n,d) reaction MT=105 (n,t) reaction MT=106 (n,He3) reaction MT=107 (n,a) reaction MF=12 Gamma-ray multiplicities MT= 3 Non-elastic gamma emission Calculated with POD code /2/. MF=14 Gamma-ray angular distributions MT= 3 Non-elastic gamma emission Assumed to be isotropic. MF=15 Gamma-ray spectra MT= 3 Non-elastic gamma emission Calculated with POD code /2/. *************************************************************** * Nuclear Model Calculations with POD Code /2/ * *************************************************************** 1. Theoretical models The POD code is based on the spherical optical model, the distorted-wave Born approximaiton (DWBA), one-component exciton preequilibrium model, and the Hauser-Feshbach-Moldauer statis- tical model. With the preequilibrim model, semi-empirical pickup and knockout process can be taken into account for composite-particle emission. The gamma-ray emission from the compound nucleus can be calculated within the framework of the exciton model. The code is capable of reading in particle transmission coefficients calculated by separate spherical or coupled-channel optical model code. 2. Optical model parameters Neutrons: Coupled-channel optical model parameters /3/ Protons: Koning and Delaroche /4/ Deuterons: Lohr and Haeberli /5/ Tritons: Becchetti and Greenlees /6/ He-3: Becchetti and Greenlees /6/ Alphas: Lemos /7/ potentials modified by Arthur and Young /8/ 3. Level scheme of Ru-105 ------------------------- No. Ex(MeV) J PI ------------------------- 0 0.00000 3/2 + 1 0.02061 5/2 + 2* 0.10794 5/2 + 3 0.15952 1/2 + 4 0.16381 3/2 + 5 0.20860 11/2 - 6* 0.22948 7/2 + 7 0.24441 1/2 - 8 0.24637 5/2 - 9 0.27272 3/2 - 10 0.30168 7/2 + 11 0.32160 3/2 - 12 0.44195 5/2 + 13 0.46627 3/2 + 14 0.49089 3/2 - 15 0.57390 15/2 - 16 0.57800 5/2 - 17 0.57811 3/2 - 18 0.58212 5/2 + 19 0.62583 7/2 + 20 0.63127 1/2 + 21 0.64403 3/2 - 22 0.67080 3/2 - 23 0.72592 9/2 + 24 0.75671 3/2 + 25 0.78456 1/2 - 26 0.80577 1/2 + 27 0.82433 3/2 + 28 0.84112 7/2 + 29 0.87343 1/2 + 30 0.88657 3/2 + 31 0.90309 5/2 - 32 0.91400 5/2 + ------------------------- Levels above 0.92400 MeV are assumed to be continuous. The symbol (*) stands for the excited level involved in the coupled-channel calculation. 4. Level density parameters Energy-dependent parameters of Mengoni-Nakajima /9/ were used ---------------------------------------------------------- Nuclei a* Pair Esh T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV ---------------------------------------------------------- Ru-106 13.487 2.331 4.166 0.658 0.033 8.035 1.392 Ru-105 14.068 1.171 4.250 0.657 -1.412 7.205 0.914 Ru-104 13.272 2.353 3.632 0.656 0.316 7.723 2.619 Ru-103 13.854 1.182 3.548 0.717 -1.842 8.034 0.954 Tc-105 12.819 1.171 4.913 0.743 -2.106 8.466 0.610 Tc-104 13.220 0.000 4.817 0.571 -1.464 4.245 0.399 Tc-103 12.611 1.182 4.679 0.684 -1.198 7.098 0.692 Mo-103 13.854 1.182 4.986 0.610 -0.985 6.470 0.746 Mo-102 13.056 2.376 4.689 0.670 -0.069 8.293 1.398 Mo-101 14.580 1.194 4.672 0.597 -1.025 6.467 0.984 ---------------------------------------------------------- 5. Gamma-ray strength functions M1, E2: Standard Lorentzian (SLO) E1 : Modified Lorentzian (MLO) /10/ 6. Preequilibrium process Preequilibrium is on for n, p, d, t, He-3, and alpha. Preequilibrium capture is on. References 1) K.Shibata, J. Nucl. Sci. Technol., 50, 1177 (2013). 2) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007). 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 4) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 5) J.M.Lohr, W.Haeberli, Nucl. Phys. A232, 381 (1974). 6) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization Phenomena in Nuclear Reactions," p.682, The University of Wisconsin Press (1971). 7) O.F.Lemos, Orsay Report, Series A, No.136 (1972). 8) E.D.Arthur, P.G.Young, LA-8626-MS (1980). 9) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994). 10) V.A.Plujko et al., J. Nucl. Sci. Technol. Suppl. 2, 811 (2002).