46-Pd-102 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4625 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,44,102-108,111,112,115) JENDL/AD-2017 adopted (MF10/MT28,32,103-105) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory Mf= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 0.88 keV In JENDL-3.3, resonance parameters were based on Mughabghab et al./1/ In JENDL-4, two resonances at 420.5 eV and 800.0 eV were taken from the work of Smith et al./2/ Moreover, the parameters for a negative resonance were adjusted so as to reproduce the thermal capture cross section measured by Duncan et al./3/ Unresolved resonance region : 880 eV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.6377e+00 Elastic 4.8172e+00 n,gamma 1.8205e+00 1.5056e+01 n,alpha 7.5191e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 44 (n,n2p) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MT=108 (n,2a) cross section Calculated with CCONE code /6/. MT=111 (n,2p) cross section Calculated with CCONE code /6/. MT=112 (n,pa) cross section Calculated with CCONE code /6/. MT=115 (n,pd) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 44 (n,n2p) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,9,15 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: Huizenga,J.R. and Igo,G./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pd-102 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.55643 2 + * 2 1.27587 4 + * 3 1.53447 2 + 4 1.59313 0 + 5 1.65810 0 + 6 1.71500 4 - 7 1.91900 1 + 8 1.94445 2 + 9 2.11135 6 + * 10 2.11165 3 + 11 2.13802 4 + 12 2.24870 2 + 13 2.29453 4 - 14 2.30127 4 + 15 2.34294 3 - * 16 2.39110 2 + 17 2.43150 3 + 18 2.47433 5 - 19 2.48020 1 + 20 2.48990 0 + 21 2.53300 4 + 22 2.54620 2 - 23 2.55350 3 - 24 2.57430 1 + 25 2.58290 2 + 26 2.60650 2 + 27 2.61073 2 + 28 2.65130 4 + 29 2.66070 0 - 30 2.67500 3 + 31 2.69590 2 - 32 2.71630 2 + 33 2.73700 5 + 34 2.76900 0 + 35 2.79890 4 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pd-103 13.8438 1.1824 0.6498 0.8078 -1.6903 7.7695 Pd-102 13.1000 2.3764 -0.3796 0.8682 -0.3231 9.2810 Pd-101 13.6288 1.1940 -0.9873 0.9031 -1.9413 9.0773 Pd-100 12.8369 2.4000 -2.0532 0.9191 0.1698 9.5513 Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149 Rh-101 15.8000 1.1940 0.8810 0.6688 -0.9502 6.3248 Rh-100 15.0000 0.0000 0.0355 0.7721 -2.7232 6.4276 Rh- 99 12.1770 1.2060 -0.7715 0.9509 -1.6977 8.8635 Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993 Ru-100 13.8300 2.4000 1.2905 0.7521 -0.0727 8.1397 Ru- 99 13.4132 1.2060 0.6723 0.7829 -1.1643 7.0541 Ru- 98 12.6202 2.4244 -0.2871 0.8887 -0.2888 9.3801 Ru- 97 13.1968 1.2184 -1.1012 0.8269 -0.7167 7.1258 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pd-103 -------------------------------------------------------- * E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb) * M1: ER = 8.75 (MeV) EG = 4.00 (MeV) SIG = 1.32 (mb) * E2: ER = 13.44 (MeV) EG = 4.87 (MeV) SIG = 2.51 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002). 3) Duncan, C.L. et al.: Phys. Rev., C71, 054322 (2005). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).