46-Pd-104 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4631 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,102-108,111,112) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory Mf= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 2.2341 keV The whole resonance parameters were taken from the work of Smith et al./1/ A value of 100 meV was assumed for the capture width. The spin of p-wave resonance was determined from the spin distribution of the level density randomly. Unresolved resonance region : 2.2341 keV - 180 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 5.2926e+00 Elastic 4.6683e+00 n,gamma 6.2426e-01 2.0324e+01 n,alpha 1.3518e-09 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MT=108 (n,2a) cross section Calculated with CCONE code /4/. MT=111 (n,2p) cross section Calculated with CCONE code /4/. MT=112 (n,pa) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,18,22 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pd-104 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.55581 2 + * 2 1.32359 4 + * 3 1.33359 0 + 4 1.34168 2 + 5 1.79286 0 + 6 1.79430 2 + 7 1.82065 3 + 8 1.94120 2 + 9 1.94800 0 - 10 1.99910 1 + 11 2.07000 2 + 12 2.08238 4 + 13 2.10300 0 + 14 2.12550 1 + 15 2.13870 0 + 16 2.17850 1 - 17 2.18156 4 + 18 2.19200 3 - * 19 2.19340 4 + 20 2.22800 4 + 21 2.24490 2 + 22 2.24950 6 + * 23 2.26531 4 + 24 2.27650 1 + 25 2.29000 4 - 26 2.29890 4 - 27 2.33790 2 + 28 2.35160 3 - 29 2.44450 4 + 30 2.45660 3 + 31 2.46500 2 + 32 2.47900 1 + 33 2.49140 5 - 34 2.49200 0 - 35 2.52140 2 + 36 2.53340 3 + 37 2.57030 4 + 38 2.57250 3 + 39 2.61340 3 + 40 2.62220 2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969 Pd-104 13.5000 2.3534 1.1560 0.7879 -0.3130 8.4969 Pd-103 13.8438 1.1824 0.6498 0.8078 -1.6903 7.7695 Pd-102 13.1000 2.3764 -0.3796 0.8682 -0.3231 9.2810 Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092 Rh-103 15.8000 1.1824 2.3988 0.6206 -0.9205 5.8890 Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149 Rh-101 15.8000 1.1940 0.8810 0.6688 -0.9502 6.3248 Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112 Ru-102 14.0000 2.3764 2.6482 0.6699 0.2865 7.1898 Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993 Ru-100 13.8300 2.4000 1.2905 0.7521 -0.0727 8.1397 Ru- 99 13.4132 1.2060 0.6723 0.7829 -1.1643 7.0541 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pd-105 -------------------------------------------------------- * E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb) * M1: ER = 8.69 (MeV) EG = 4.00 (MeV) SIG = 1.26 (mb) * E2: ER = 13.35 (MeV) EG = 4.85 (MeV) SIG = 2.47 (mb) -------------------------------------------------------- References 1) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).