46-Pd-105 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4634 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,41,102-107,111,112) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 2.0485 keV The parameters were based on the basis of the data measured by Staveloz et al./1/. Data of Bollinger et al./2/ and of Coceva et al./3/ were also taken into account to determine the angular momentum l and the spin j. The average radiation width of 0.15 ev was assumed for s-wave levels. Two negative resonances were added so as to reproduce the thermal capture and scattering cross sections given by Mughabghab et al./4/ Total spin j of some resonances was tentatively estimated with a random number method. Neutron orbital angular momentum l of some resonances was estimated with a method of Bollinger and Thomas/5/. In JENDL-4, the data for 3.9 - 804 eV were replaced with the ones obtained by Smith et al./6/ The values of unknown J were determined from the spin distribution of level density randomly. Unresolved resonance region : 2.0485 keV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /7/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /8/ and CCONE /9/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.5547e+01 Elastic 5.1104e+00 n,gamma 2.0436e+01 1.0256e+02 n,alpha 2.2939e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /9/. MT= 16 (n,2n) cross section Calculated with CCONE code /9/. MT= 17 (n,3n) cross section Calculated with CCONE code /9/. MT= 22 (n,na) cross section Calculated with CCONE code /9/. MT= 24 (n,2na) cross section Calculated with CCONE code /9/. MT= 28 (n,np) cross section Calculated with CCONE code /9/. MT= 32 (n,nd) cross section Calculated with CCONE code /9/. MT= 41 (n,2np) cross section Calculated with CCONE code /9/. MT= 51-91 (n,n') cross section Calculated with CCONE code /9/. MT=102 Capture cross section Calculated with CCONE code /9/. MT=103 (n,p) cross section Calculated with CCONE code /9/. MT=104 (n,d) cross section Calculated with CCONE code /9/. MT=105 (n,t) cross section Calculated with CCONE code /9/. MT=106 (n,He3) cross section Calculated with CCONE code /9/. MT=107 (n,a) cross section Calculated with CCONE code /9/. MT=111 (n,2p) cross section Calculated with CCONE code /9/. MT=112 (n,pa) cross section Calculated with CCONE code /9/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /9/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /9/. MT= 17 (n,3n) reaction Calculated with CCONE code /9/. MT= 22 (n,na) reaction Calculated with CCONE code /9/. MT= 24 (n,2na) reaction Calculated with CCONE code /9/. MT= 28 (n,np) reaction Calculated with CCONE code /9/. MT= 32 (n,nd) reaction Calculated with CCONE code /9/. MT= 41 (n,2np) reaction Calculated with CCONE code /9/. MT= 51-91 (n,n') reaction Calculated with CCONE code /9/. MT=102 Capture reaction Calculated with CCONE code /9/. ***************************************************************** Nuclear Model Calculation with CCONE code /9/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,2,15,27 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./10/ (+) proton omp: Koning,A.J. and Delaroche,J.P./11/ deuteron omp: Lohr,J.M. and Haeberli,W./12/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/ alpha omp: Huizenga,J.R. and Igo,G./14/ (+) omp parameters were modified. 2) Two-component exciton model/15/ * Global parametrization of Koning-Duijvestijn/16/ was used. * Gamma emission channel/17/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/18/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/19/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /20/,/21/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pd-105 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 5/2 + * 1 0.28051 3/2 + 2 0.30625 7/2 + * 3 0.31922 5/2 + 4 0.34451 1/2 + 5 0.44238 7/2 + 6 0.44700 5/2 + 7 0.48914 11/2 - 8 0.53500 3/2 + 9 0.56075 3/2 + 10 0.64453 7/2 - 11 0.65070 3/2 + 12 0.67317 1/2 + 13 0.69666 7/2 + 14 0.72722 5/2 + 15 0.78194 9/2 + * 16 0.78700 1/2 + 17 0.80800 7/2 - 18 0.90198 5/2 + 19 0.92100 5/2 + 20 0.92913 5/2 + 21 0.93900 1/2 + 22 0.96140 3/2 - 23 0.96238 3/2 + 24 0.97015 15/2 - 25 0.97200 3/2 - 26 1.01155 7/2 - 27 1.01171 11/2 + * 28 1.07220 5/2 - 29 1.07440 5/2 + 30 1.07500 1/2 + 31 1.08796 3/2 - 32 1.09842 5/2 + 33 1.10210 3/2 + 34 1.12533 3/2 + 35 1.14081 1/2 + 36 1.14235 3/2 - 37 1.17770 5/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089 Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969 Pd-104 13.5000 2.3534 1.1560 0.7879 -0.3130 8.4969 Pd-103 13.8438 1.1824 0.6498 0.8078 -1.6903 7.7695 Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130 Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092 Rh-103 15.8000 1.1824 2.3988 0.6206 -0.9205 5.8890 Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149 Ru-104 13.2688 2.3534 3.6273 0.6755 0.1955 7.1592 Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112 Ru-102 14.0000 2.3764 2.6482 0.6699 0.2865 7.1898 Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993 Ru-100 13.8300 2.4000 1.2905 0.7521 -0.0727 8.1397 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pd-106 -------------------------------------------------------- * E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb) * M1: ER = 8.66 (MeV) EG = 4.00 (MeV) SIG = 1.23 (mb) * E2: ER = 13.31 (MeV) EG = 4.84 (MeV) SIG = 2.46 (mb) -------------------------------------------------------- References 1) Staveloz, P., et al.: "Proc. Specialist's Meeting on Neutron Cross Sections of Fission Product Nuclei, Bologna 1979", NEANDC(E)209L, 53 (1979). 2) Bollinger, L.M., et al.: "Proc. Congres International de Physique Nucleaire, Paris 1964", Vol.2, 673 (1964). 3) Coceva, C., et al.: Phys. Lett., 16, 159 (1965). 4) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 5) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968). 6) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002). 7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 8) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 14) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 15) Kalbach,C.: Phys. Rev. C33, 818 (1986). 16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).