46-Pd-108 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4643 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-10 JENDL-5b3 revised by N.Iwamoto (MF2/MT151) reevaluated (MF3,6/MT600-849) added (MF8/MT4-107) added (MF9/MT102) added (MF10/MT16,103,105) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 9 keV In JENDL-3.3, the parameters were mainly taken from the recommendation of Mughabghab et al./1/ The average radiation with of 77 meV/1/ was assumed. In JENDL-4, the data for 33 eV - 2.3 keV were replaced with the ones obtained by Smith et al./2/ A value of 77 meV was used for unknown radiation widths. Spin of the p-wave resonance was determined from the spin distribution of level density randomly. The parameters for 32.98 and 90.98-eV s-wave resonances were alightly adjusted. In JENDL-5 the parameters of 2.95-eV p-wave resonance were derived by REFIT, based on the data measured with ANNRI/3/. Unresolved resonance region : 9 keV - 160 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.00030E+01 Elastic 1.96180E+00 n,gamma 8.04119E+00 2.35211E+02 n,alpha 4.30670E-22 1.24316E-21 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103, 600-649 (n,p) cross section Calculated with CCONE code /6/. MT=104, 650-699 (n,d) cross section Calculated with CCONE code /6/. MT=105, 700-749 (n,t) cross section Calculated with CCONE code /6/. MT=106, 750-799 (n,He3) cross section Calculated with CCONE code /6/. MT=107, 800-849 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. MT=600-649 (n,p) cross section Calculated with CCONE code /6/. MT=650-699 (n,d) cross section Calculated with CCONE code /6/. MT=700-749 (n,t) cross section Calculated with CCONE code /6/. MT=750-799 (n,He3) cross section Calculated with CCONE code /6/. MT= 800-849 (n,a) cross section Calculated with CCONE code /6/. MF= 8 Information on decay data MT= 4 (n,n') reaction MT= 16 (n,2n) reaction MT= 17 (n,3n) reaction MT= 22 (n,na) reaction MT= 28 (n,np) reaction MT=102 Capture reaction MT=103 (n,p) reaction MT=104 (n,d) reaction MT=105 (n,t) reaction MT=107 (n,a) reaction MF= 9 Isomeric branching ratios MT=102 Capture reaction Calculated with CCONE code /6/. MF=10 Nuclide production cross sections MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT=103 (n,p) reaction Calculated with CCONE code /6/. MT=105 (n,t) reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,10,14 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: Huizenga,J.R. and Igo,G./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pd-108 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.43394 2 + * 2 0.93114 2 + 3 1.04825 4 + * 4 1.05278 0 + 5 1.31422 0 + 6 1.33522 3 + 7 1.44118 2 + 8 1.53996 1 + 9 1.62520 4 + 10 1.77116 6 + * 11 1.95700 4 + 12 1.98986 4 + 13 2.01500 1 - 14 2.04665 3 - * 15 2.09867 2 + 16 2.14100 0 + 17 2.21801 2 + 18 2.28121 1 - 19 2.28249 0 + 20 2.32480 5 - 21 2.36200 2 + 22 2.39140 2 + 23 2.39750 8 + 24 2.40410 0 + 25 2.41800 0 + 26 2.42200 6 + 27 2.46600 4 + 28 2.47757 2 + 29 2.53100 0 + 30 2.53640 0 + 31 2.54020 4 + 32 2.54840 8 + 33 2.57800 0 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457 Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413 Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188 Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089 Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132 Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036 Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000 Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130 Ru-107 15.5000 1.1601 4.4476 0.6172 -1.4266 6.1858 Ru-106 13.4840 2.3311 4.1609 0.6686 0.0022 7.2594 Ru-105 15.3000 1.1711 4.2450 0.6623 -1.8991 6.8479 Ru-104 13.2688 2.3534 3.6273 0.6755 0.1955 7.1592 Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pd-109 -------------------------------------------------------- * E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb) * M1: ER = 8.58 (MeV) EG = 4.00 (MeV) SIG = 1.14 (mb) * E2: ER = 13.19 (MeV) EG = 4.80 (MeV) SIG = 2.41 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002). 3) Nakamura,S.: Nucl. Data Sheets, 119, 143 (2014). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).