46-Pd-110 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4649 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,102-107) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 8 keV In JENDL-3.3, resonance parameters were mainly taken from the recommendation by Mughabghab et al./1/ Average radiation width of 60 meV/1/ was assumed. A negative resonance was added at -20 eV so as to reproduce the thermal capture cross sections given by Mughabghab et al. In JENDL-4, the data for 5.19 - 1.4 keV were replaced with the ones obtained by Smith et al./2/ A values of 60 meV was used for unknown radiation withds. Spin of the p-wave resonance was determined from the spin distribution of level density randomly. Unresolved resonance region : 8 keV - 150 keV The unresolved resonance paramters (URP) were determined by ASREP code /3/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /4/ and CCONE /5/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 5.2444e+00 Elastic 5.0188e+00 n,gamma 2.2560e-01 3.2840e+00 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /5/. MT= 16 (n,2n) cross section Calculated with CCONE code /5/. MT= 17 (n,3n) cross section Calculated with CCONE code /5/. MT= 22 (n,na) cross section Calculated with CCONE code /5/. MT= 28 (n,np) cross section Calculated with CCONE code /5/. MT= 51-91 (n,n') cross section Calculated with CCONE code /5/. MT=102 Capture cross section Calculated with CCONE code /5/. MT=103 (n,p) cross section Calculated with CCONE code /5/. MT=104 (n,d) cross section Calculated with CCONE code /5/. MT=105 (n,t) cross section Calculated with CCONE code /5/. MT=106 (n,He3) cross section Calculated with CCONE code /5/. MT=107 (n,a) cross section Calculated with CCONE code /5/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /5/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /5/. MT= 17 (n,3n) reaction Calculated with CCONE code /5/. MT= 22 (n,na) reaction Calculated with CCONE code /5/. MT= 28 (n,np) reaction Calculated with CCONE code /5/. MT= 51-91 (n,n') reaction Calculated with CCONE code /5/. MT=102 Capture reaction Calculated with CCONE code /5/. ***************************************************************** Nuclear Model Calculation with CCONE code /5/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,3,10,22 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./6/ (+) proton omp: Koning,A.J. and Delaroche,J.P./7/ deuteron omp: Lohr,J.M. and Haeberli,W./8/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ alpha omp: Huizenga,J.R. and Igo,G./10/ (+) omp parameters were modified. 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/14/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/15/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /16/,/17/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pd-110 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.37380 2 + * 2 0.81361 2 + 3 0.92077 4 + * 4 0.94673 0 + 5 1.17066 0 + 6 1.21224 3 + 7 1.21442 2 + 8 1.39824 4 + 9 1.47007 2 + 10 1.57404 6 + * 11 1.58400 0 + 12 1.64100 0 + 13 1.71906 4 + 14 1.85800 2 + 15 1.86400 2 + 16 1.88967 2 + 17 1.90018 2 + 18 1.93447 4 + 19 1.95600 4 + 20 1.98800 4 + 21 2.01500 4 + 22 2.03767 3 - * 23 2.06100 6 + 24 2.08900 4 + 25 2.09500 0 + 26 2.12530 1 - 27 2.14000 2 + 28 2.14170 4 + 29 2.19300 2 - 30 2.19400 6 + 31 2.25900 0 + 32 2.27610 3 - 33 2.29330 5 - 34 2.29500 4 + 35 2.29600 8 + 36 2.32206 4 + 37 2.33200 6 + 38 2.36970 0 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pd-111 15.9000 1.1390 4.1515 0.6121 -1.4174 6.1649 Pd-110 13.9128 2.2883 3.6344 0.6741 -0.1028 7.3768 Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457 Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413 Rh-110 14.6000 0.0000 4.3454 0.5233 -1.1899 3.2077 Rh-109 13.2140 1.1494 4.3457 0.6878 -1.3307 6.2934 Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132 Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036 Ru-109 14.4845 1.1494 4.6016 0.6919 -2.0708 7.0469 Ru-108 13.6986 2.3094 4.4330 0.6832 -0.3716 7.6387 Ru-107 15.5000 1.1601 4.4476 0.6172 -1.4266 6.1858 Ru-106 13.4840 2.3311 4.1609 0.6686 0.0022 7.2594 Ru-105 15.3000 1.1711 4.2450 0.6623 -1.8991 6.8479 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pd-111 -------------------------------------------------------- * E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb) * M1: ER = 8.53 (MeV) EG = 4.00 (MeV) SIG = 1.09 (mb) * E2: ER = 13.11 (MeV) EG = 4.78 (MeV) SIG = 2.38 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002). 3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 11) Kalbach,C.: Phys. Rev. C33, 818 (1986). 12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).