47-Ag-107 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4725 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-107,111,112) JENDL/AD-2017 adopted (MF9/MT102,103,107) JENDL/AD-2017 adopted (MF10/MT4,16,17,22,24,106,111) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances Resolved resonance parameters (below 7.0095 keV) Resolved resonance parameters (below 7.0095keV) for JENDL-3.3 were based on the experimental data by Moxon and Rae /1/, Garg et al./2/, Asghar et al./3/, Muradjan and Adamchuk /4/, de Barros et al./5/, Pattenden and Jolly /6/, macklin /7/ and Mizumoto et al./8/. Total spin j and angular momentum l of some resonances were estimated with a random number method and a method of Bollinger and Thomas/9/, respectively. The capture cross section of JENDL-3.3 between 1.3 and 2.6 keV is too low compared with interpolated values from the lower and higher energy regions. To compensate the lower capture cross section, p-wave resonances with a capture area of 0.04 eV were added every 40 eV between 1.28 and 2.04 keV, and every 15 eV between 2.04 and 2.64 keV. The neutron width was modified so as to reproduce teh capture area measured by Macklin /7/. In JENDL-4, the data for -11.1 eV - 778.8 eV were replaced with the ones obtained by Lowie et al./10/ A value of 140 meV was used for unknown radiation widths. Part of unknown j values were determined by considering the work of Zanini et al./11/ The remaining unknown j values were estimated by a random number method. Unresolved resonance region : 7.0095 keV - 120 keV The unresolved resonance paramters (URP) were determined by ASREP code /12/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /13/ and CCONE /14/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.5197e+01 Elastic 7.5518e+00 n,gamma 3.7645e+01 1.0552e+02 n,alpha 1.4043e-08 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /14/. MT= 16 (n,2n) cross section Calculated with CCONE code /14/. MT= 17 (n,3n) cross section Calculated with CCONE code /14/. MT= 22 (n,na) cross section Calculated with CCONE code /14/. MT= 24 (n,2na) cross section Calculated with CCONE code /14/. MT= 28 (n,np) cross section Calculated with CCONE code /14/. MT= 32 (n,nd) cross section Calculated with CCONE code /14/. MT= 33 (n,nt) cross section Calculated with CCONE code /14/. MT= 41 (n,2np) cross section Calculated with CCONE code /14/. MT= 51-91 (n,n') cross section Calculated with CCONE code /14/. MT=102 Capture cross section Calculated with CCONE code /14/. MT=103 (n,p) cross section Calculated with CCONE code /14/. MT=104 (n,d) cross section Calculated with CCONE code /14/. MT=105 (n,t) cross section Calculated with CCONE code /14/. MT=106 (n,He3) cross section Calculated with CCONE code /14/. MT=107 (n,a) cross section Calculated with CCONE code /14/. MT=111 (n,2p) cross section Calculated with CCONE code /14/. MT=112 (n,pa) cross section Calculated with CCONE code /14/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /14/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /14/. MT= 17 (n,3n) reaction Calculated with CCONE code /14/. MT= 22 (n,na) reaction Calculated with CCONE code /14/. MT= 24 (n,2na) reaction Calculated with CCONE code /14/. MT= 28 (n,np) reaction Calculated with CCONE code /14/. MT= 32 (n,nd) reaction Calculated with CCONE code /14/. MT= 33 (n,nt) reaction Calculated with CCONE code /14/. MT= 41 (n,2np) reaction Calculated with CCONE code /14/. MT= 51-91 (n,n') reaction Calculated with CCONE code /14/. MT=102 Capture reaction Calculated with CCONE code /14/. ***************************************************************** Nuclear Model Calculation with CCONE code /14/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,3,4,9,14 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./15/ (+) proton omp: Koning,A.J. and Delaroche,J.P./16/ deuteron omp: Lohr,J.M. and Haeberli,W./17/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./18/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./18/ alpha omp: Huizenga,J.R. and Igo,G./19/ (+) omp parameters were modified. * resonance for pseudo levels was calculated on the basis of DWBA. ER= 2.500 (MeV) WIDTH= 0.400 (MeV) L= 3 BETA= 0.155 2) Two-component exciton model/20/ * Global parametrization of Koning-Duijvestijn/21/ was used. * Gamma emission channel/22/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/23/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/24/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /25/,/26/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Ag-107 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 - * 1 0.09312 7/2 + 2 0.12559 9/2 + 3 0.32481 3/2 - * 4 0.42315 5/2 - * 5 0.77331 11/2 + 6 0.78659 3/2 - 7 0.92206 5/2 + 8 0.94970 5/2 - 9 0.97330 7/2 - * 10 0.99100 13/2 + 11 1.06120 7/2 + 12 1.14200 1/2 + 13 1.14306 5/2 - 14 1.14690 9/2 - * 15 1.22200 11/2 - 16 1.22301 5/2 + 17 1.25889 3/2 + 18 1.32580 3/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Ag-108 14.6000 0.0000 2.5216 0.6708 -2.2742 5.0724 Ag-107 15.6000 1.1601 1.9728 0.5979 -0.4714 5.2925 Ag-106 13.4291 0.0000 1.2475 0.7902 -2.6899 6.1687 Ag-105 12.8006 1.1711 0.7422 0.8304 -1.4372 7.4941 Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188 Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089 Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969 Pd-104 13.5000 2.3534 1.1560 0.7879 -0.3130 8.4969 Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000 Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130 Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092 Rh-103 15.8000 1.1824 2.3988 0.6206 -0.9205 5.8890 Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149 -------------------------------------------------------- Table 3. Gamma-ray strength function for Ag-108 -------------------------------------------------------- * E1: ER = 15.90 (MeV) EG = 6.71 (MeV) SIG = 150.00 (mb) ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb) * M1: ER = 8.61 (MeV) EG = 4.00 (MeV) SIG = 1.27 (mb) * E2: ER = 13.23 (MeV) EG = 4.81 (MeV) SIG = 2.53 (mb) -------------------------------------------------------- References 1) Moxon, M.C., Rae, E.R., "Proc. EANDC Conf. on Time-of-Flight Methods, Saclay, 1961",439. 2) Garg, J.B., et al., Phys. Rev., B137, 547(1965). 3) Asghar, M., et al., "Proc. Int. Conf. on the Study of Nuclear Structure with Neutrons, Antwerp 1965",(65). 4) Muradjan, G.V., Adamchuk, Ju. V., Jaderno-Fizicheskie Issledovanija, 6, 64 (1968). 5) de Barros, S., et al., Nucl. Phys., A131, 305(1969). 6) Pattenden, N.J., Jolly, J.E., AERE-PR/NP-16(1969). 7) Macklin, R.L., Nucl. Sci. Eng., 82, 400(1982). 8) Mizumoto, M., et al., J. Nucl. Sci. Technol., 20, 883(1983). 9) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968). 10) Lowie, L.Y., Phys. Rev., C59, 1119 (1999); Phys. Rev., C56, 90 (1997). 11) Zanini, L, et al., JINR-E3-97-213, p.221 (1997). 12) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 13) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 14) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 15) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 16) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 17) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 18) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 19) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 20) Kalbach,C.: Phys. Rev. C33, 818 (1986). 21) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 22) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 23) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 24) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 25) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 26) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).