47-Ag-108MJAEA EVAL-Sep21 N.Iwamoto DIST-DEC21 20210920 ----JENDL-5 MATERIAL 4729 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-10 Evaluated with CCONE code by N.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 6.66 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.33451E+01 Elastic 5.59632E+00 Inelas 3.85887E-05 2.46488E-01 n,gamma 1.75161E+01 3.07431E+02 n,p 5.85356E-06 1.19358E-04 n,alpha 2.99432E-07 5.23090E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 1.98 eV the 1/v cross section was assumed. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MT=111 (n,2p) cross section Calculated with CCONE code /1/. MT=112 (n,pa) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=111 (n,2p) reaction Calculated with CCONE code /1/. MT=112 (n,pa) reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MF= 9 Isomeric branching ratios MT==102 Capture reaction Calculated with CCONE code /1/. MT=107 (n,a) reaction Calculated with CCONE code /1/. MF=10 Nuclide production reactions MT= 4 (n,n') reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT=104 (n,d) reaction Calculated with CCONE code /1/. MT=106 (n,He3) reaction Calculated with CCONE code /1/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : M.Avrigeanu and V.Avrigeanu/7/ * Level scheme of Ag-108 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1 + 1 0.079140 2 - 2 0.109470 6 + 3 0.155900 5 + 4 0.193070 1 + 5 0.206610 2 + 6 0.215380 3 + 7 0.286700 3 + 8 0.290180 1 + 9 0.294560 2 + 10 0.324500 3 + 11 0.331600 1 - 12 0.338420 3 - 13 0.364240 4 + 14 0.364970 6 - 15 0.374560 7 + 16 0.379240 1 - 17 0.408360 3 + 18 0.419600 6 - 19 0.438710 6 - 20 0.452000 5 - 21 0.465640 0 - 22 0.471850 4 + 23 0.485070 4 - 24 0.497250 7 - 25 0.508480 2 - 26 0.516840 3 - 27 0.522470 6 + 28 0.532950 8 - 29 0.537500 2 + 30 0.542850 3 - 31 0.563810 2 + 32 0.579110 2 - 33 0.587370 4 - 34 0.598660 4 - 35 0.606530 1 - 36 0.611660 2 + 37 0.615710 3 + 38 0.616940 2 - 39 0.645500 3 + 40 0.656330 3 - ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Ag-109 14.144 1.149 2.964 0.669 -1.179 6.126 1.091 Ag-108 13.612 0.000 2.517 0.681 -2.085 4.813 1.034 Ag-107 13.932 1.160 1.968 0.651 -0.552 5.502 1.449 Ag-106 13.826 0.000 1.242 0.712 -2.061 5.083 1.225 Pd-108 13.630 2.309 3.179 0.645 0.389 6.732 2.141 Pd-107 14.379 1.160 3.188 0.616 -0.749 5.455 1.615 Pd-106 13.813 2.331 2.336 0.688 0.134 7.298 2.579 Pd-105 13.768 1.171 2.062 0.762 -1.811 7.313 1.259 Rh-107 13.932 1.160 4.029 0.647 -1.192 5.945 1.078 Rh-106 13.826 0.000 3.798 0.649 -2.262 4.717 1.547 Rh-105 13.720 1.171 3.416 0.672 -1.194 6.111 1.441 Rh-104 13.378 0.000 2.963 0.688 -2.247 4.924 1.073 Rh-103 13.507 1.182 2.389 0.704 -1.102 6.275 1.580 Rh-102 13.400 0.000 1.647 0.743 -2.401 5.488 0.761 --------------------------------------------------------- * Gamma-ray strength functions for Ag-109 E1: hybrid model(GH)/10/ ER= 14.21 (MeV) EG= 4.14 (MeV) SIG= 79.21 (mb) ER= 16.99 (MeV) EG= 5.82 (MeV) SIG= 158.42 (mb) M1: standard lorentzian model(SLO) ER= 8.58 (MeV) EG= 4.00 (MeV) SIG= 1.01 (mb) E2: standard lorentzian model(SLO) ER= 13.19 (MeV) EG= 4.80 (MeV) SIG= 2.51 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) M.Avrigeanu and V.Avrigeanu, Phys. Rev. C82, 014606 (2010) 8) A.Gilbert and A.G.W.Cameron, Can. J. Phys, 43, 1446 (1965) 9) A.Mengoni and Y.Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S.Goriely, Phys. Lett. B436, 10 (1998)