47-Ag-110MJAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4735 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances Resolved resonance region (MLBW formula) : below 0.125 keV Most parameters were based on the experiments by Anufriev et al./1/ Average radiation width of 148 MeV/1/ was adopted. Total spin J was tentatively estimated with a random number method. Neutron orbital angular momentum L was estimated with a method of Bollinger and Thomas /2/. A negative resonance at -2 eV was added so as to reproduce the thermal capture cross sections given by Mughabghab et al./3/ Unresolved resonance region : 125.0 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 8.8507e+01 Elastic 6.4982e+00 Inelas 1.2212e-02 n,gamma 8.1996e+01 7.4468e+01 n,p 7.0783e-10 n,alpha 1.4860e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 33 (n,nt) cross section Calculated with CCONE code /6/. MT= 41 (n,2np) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 33 (n,nt) reaction Calculated with CCONE code /6/. MT= 41 (n,2np) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 2,19 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: Huizenga,J.R. and Igo,G./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Ag-110 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1 + 1 0.00111 2 - 2 0.11759 6 + * 3 0.11872 3 + 4 0.19120 3 - 5 0.19162 2 + 6 0.19870 2 + 7 0.23686 2 - 8 0.23705 2 - 9 0.26722 2 + 10 0.26900 1 - 11 0.27147 3 + 12 0.30170 2 + 13 0.30452 1 + 14 0.33700 1 - 15 0.33892 2 - 16 0.36062 3 + 17 0.37800 1 - 18 0.38120 2 + 19 0.39559 7 + * 20 0.41198 2 - 21 0.42471 2 + 22 0.43237 2 - 23 0.45653 2 + 24 0.46689 2 - 25 0.46885 4 + 26 0.47123 1 + 27 0.48400 0 - 28 0.48578 3 + 29 0.49688 2 - 30 0.52566 2 + 31 0.52751 4 - 32 0.53600 0 - 33 0.53618 1 + 34 0.54938 2 + 35 0.58680 3 - 36 0.59400 1 - 37 0.59503 2 + 38 0.61304 1 - 39 0.61513 2 - 40 0.63344 2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Ag-111 13.4200 1.1390 3.5757 0.7153 -1.5062 6.6439 Ag-110 15.3000 0.0000 3.3762 0.5836 -1.7755 4.1405 Ag-109 15.6000 1.1494 2.9604 0.6222 -1.0590 5.9420 Ag-108 14.6000 0.0000 2.5216 0.6708 -2.2742 5.0724 Pd-110 13.9128 2.2883 3.6344 0.6741 -0.1028 7.3768 Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457 Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413 Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188 Rh-109 13.2140 1.1494 4.3457 0.6878 -1.3307 6.2934 Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132 Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036 Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000 Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130 -------------------------------------------------------- Table 3. Gamma-ray strength function for Ag-111 -------------------------------------------------------- * E1: ER = 15.90 (MeV) EG = 6.71 (MeV) SIG = 150.00 (mb) ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb) * M1: ER = 8.53 (MeV) EG = 4.00 (MeV) SIG = 1.18 (mb) * E2: ER = 13.11 (MeV) EG = 4.78 (MeV) SIG = 2.48 (mb) -------------------------------------------------------- References 1) ANUFRIEV,V.A. ET AL.: ATOM. ENERGIYA, 53, 29 (1982) 2) BOLLINGER,L.M. AND THOMAS,G.E.: PHYS. REV., 171,1293(1968). 3) MUGHABGHAB,S.F. ET AL.: "NEUTRON CROSS SECTIONS, VOL. I, PART A", ACADEMIC PRESS (1981). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).