47-Ag-111 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 4737 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,33,41,102-107) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances No resolved resonance parameters Unresolved resonance region : 10.0 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 8.5171e+00 Elastic 5.4954e+00 n,gamma 3.0012e+00 1.0483e+02 n,alpha 9.8525e-20 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 33 (n,nt) cross section Calculated with CCONE code /3/. MT= 41 (n,2np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 33 (n,nt) reaction Calculated with CCONE code /3/. MT= 41 (n,2np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,3,5,17,22 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Koning,A.J. and Delaroche,J.P./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ (+) omp parameters were modified. * resonance for pseudo levels was calculated on the basis of DWBA. ER= 2.500 (MeV) WIDTH= 0.400 (MeV) L= 3 BETA= 0.155 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Ag-111 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 - * 1 0.05982 7/2 + 2 0.13028 9/2 + 3 0.28971 3/2 - * 4 0.37671 3/2 + 5 0.39128 5/2 - * 6 0.40486 1/2 + 7 0.54572 7/2 + 8 0.56867 5/2 + 9 0.56880 5/2 + 10 0.60687 5/2 + 11 0.64193 3/2 - 12 0.68305 9/2 + 13 0.70542 11/2 + 14 0.71029 7/2 + 15 0.80917 5/2 - 16 0.82446 11/2 + 17 0.84588 7/2 - * 18 0.87663 9/2 + 19 0.95896 11/2 + 20 0.98682 5/2 - 21 1.01306 9/2 + 22 1.02398 9/2 - * 23 1.06227 3/2 + 24 1.08200 1/2 - 25 1.08548 7/2 + 26 1.08664 5/2 + 27 1.11968 3/2 + 28 1.12535 11/2 + 29 1.14700 3/2 + 30 1.15341 7/2 - 31 1.15978 7/2 - 32 1.17020 5/2 + 33 1.18016 5/2 + 34 1.19888 1/2 + 35 1.20100 3/2 - 36 1.20230 11/2 + 37 1.21038 3/2 + 38 1.26279 3/2 + 39 1.27660 9/2 + 40 1.27800 3/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Ag-112 15.4000 0.0000 3.7588 0.5542 -1.5783 3.8000 Ag-111 13.4200 1.1390 3.5757 0.7153 -1.5062 6.6439 Ag-110 15.3000 0.0000 3.3762 0.5836 -1.7755 4.1405 Ag-109 15.6000 1.1494 2.9604 0.6222 -1.0590 5.9420 Pd-111 15.9000 1.1390 4.1515 0.6121 -1.4174 6.1649 Pd-110 13.9128 2.2883 3.6344 0.6741 -0.1028 7.3768 Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457 Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413 Rh-110 14.6000 0.0000 4.3454 0.5233 -1.1899 3.2077 Rh-109 13.2140 1.1494 4.3457 0.6878 -1.3307 6.2934 Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132 Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036 Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000 -------------------------------------------------------- Table 3. Gamma-ray strength function for Ag-112 -------------------------------------------------------- * E1: ER = 15.90 (MeV) EG = 6.71 (MeV) SIG = 150.00 (mb) ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb) * M1: ER = 8.51 (MeV) EG = 4.00 (MeV) SIG = 1.15 (mb) * E2: ER = 13.07 (MeV) EG = 4.77 (MeV) SIG = 2.46 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).