50-Sn-114 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5031 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,102-105,107,111,112) JENDL/AD-2017 adopted (MF8/MT106) added (MF9/MT107) JENDL/AD-2017 adopted (MF10/MT16,28,32,103-105,111,112) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 2.5 KEV RESONANCE PARAMETERS WERE MAINLY BASED ON MUGHABGHAB ET AL./1/ THE LEVELS WHOSE NEUTRON WIDTH WAS UNKNOWN WERE ASSUMED TO BE P-WAVE RESONANCES, AND A REDUCED NEUTRON WIDTH OF 0.082 EV WAS TENTATIVELY GIVEN FOR THOSE LEVELS. AVERAGE RADIATION WIDTH OF 0.090 EV AND SCATTERING RADIUS OF 6.3 FM WERE TAKEN FROM MUGHABGHAB ET AL. Unresolved resonance region : 2.5 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.6916e+00 Elastic 4.5663e+00 n,gamma 1.2531e-01 6.4625e+00 n,alpha 6.7582e-11 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MT=111 (n,2p) cross section Calculated with CCONE code /4/. MT=112 (n,pa) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,6 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Kunieda,S. et al./5/ deuteron omp: Lohr,J.M. and Haeberli,W./6/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/ alpha omp: Huizenga,J.R. and Igo,G./8/ (+) omp parameters were modified. 2) Two-component exciton model/9/ * Global parametrization of Koning-Duijvestijn/10/ was used. * Gamma emission channel/11/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/12/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/13/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /14/,/15/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-114 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 1.29991 2 + * 2 1.95327 0 + 3 2.15628 0 + 4 2.18760 4 + 5 2.23895 2 + 6 2.27499 3 - * 7 2.42167 0 + 8 2.45407 2 + 9 2.51476 3 + 10 2.57600 2 + 11 2.61446 4 + 12 2.73840 3 - 13 2.75970 4 - 14 2.76536 4 + 15 2.81515 5 - 16 2.85981 4 + 17 2.90512 4 + 18 2.91573 2 + 19 2.94343 2 + 20 3.02500 3 + 21 3.02529 0 + 22 3.02809 3 + 23 3.07140 4 - 24 3.08737 7 - 25 3.10010 4 - 26 3.10710 5 + 27 3.14979 6 + 28 3.18613 2 + 29 3.18892 6 + 30 3.19039 8 - 31 3.20400 0 + 32 3.20761 2 + 33 3.21176 2 + 34 3.22600 2 + 35 3.24205 5 - 36 3.24439 6 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538 Sn-114 14.3397 2.2478 0.6810 0.6658 0.7718 6.5831 Sn-113 15.4000 1.1289 0.7517 0.6142 -0.2165 5.1009 Sn-112 14.1265 2.2678 0.0327 0.6962 0.7947 6.7965 In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976 In-113 13.6257 1.1289 2.0526 0.6704 -0.5799 5.6037 In-112 14.0642 0.0000 1.6631 0.6172 -1.2351 3.7389 In-111 13.4200 1.1390 1.2797 0.6828 -0.3713 5.4885 Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086 Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999 Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644 Cd-110 13.9128 2.2883 1.7183 0.7231 -0.0110 7.6874 Cd-109 16.0000 1.1494 1.5974 0.6243 -0.7773 5.7804 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-115 -------------------------------------------------------- * E1: ER = 15.75 (MeV) EG = 5.03 (MeV) SIG = 257.32 (mb) * M1: ER = 8.43 (MeV) EG = 4.00 (MeV) SIG = 0.68 (mb) * E2: ER = 12.96 (MeV) EG = 4.73 (MeV) SIG = 2.74 (mb) -------------------------------------------------------- References 1) MUGHABGHAB, S.F. ET AL.: "NEUTRON CROSS SECTIONS, VOL. I, PART A", ACADEMIC PRESS (1981). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 9) Kalbach,C.: Phys. Rev. C33, 818 (1986). 10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).