50-Sn-115 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5034 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,41,102-105,107,111) JENDL/AD-2017 adopted (MF8/MT106) added (MF9/MT103) JENDL/AD-2017 adopted (MF10/MT17,22,28,32,41,104,105) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 0.95 keV Resonance parameters were based on Mughabghab et al./1/ Total spin j of some resonances was tentatively estimated with a random number method. Averaged radiation width of 85 meV and scattering radius of 6.3 fm were assumed from the systematics of measured values for neighboring nuclides. A negative resonance was added so as to reproduce thermal capture crosssection given by Mughabghab et al. In JENDL-4, the energy of the negative resonance was changed to -7.65 eV so as to reproduce the thermal capture cross section newly recommended by Mughabghab /2/. Unresolved resonance region : 950 eV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /3/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /4/ and CCONE /5/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.8757e+01 Elastic 1.0533e+01 n,gamma 5.8224e+01 1.9845e+01 n,alpha 1.9670e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /5/. MT= 16 (n,2n) cross section Calculated with CCONE code /5/. MT= 17 (n,3n) cross section Calculated with CCONE code /5/. MT= 22 (n,na) cross section Calculated with CCONE code /5/. MT= 24 (n,2na) cross section Calculated with CCONE code /5/. MT= 28 (n,np) cross section Calculated with CCONE code /5/. MT= 32 (n,nd) cross section Calculated with CCONE code /5/. MT= 41 (n,2np) cross section Calculated with CCONE code /5/. MT= 51-91 (n,n') cross section Calculated with CCONE code /5/. MT=102 Capture cross section Calculated with CCONE code /5/. MT=103 (n,p) cross section Calculated with CCONE code /5/. MT=104 (n,d) cross section Calculated with CCONE code /5/. MT=105 (n,t) cross section Calculated with CCONE code /5/. MT=106 (n,He3) cross section Calculated with CCONE code /5/. MT=107 (n,a) cross section Calculated with CCONE code /5/. MT=111 (n,2p) cross section Calculated with CCONE code /5/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /5/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /5/. MT= 17 (n,3n) reaction Calculated with CCONE code /5/. MT= 22 (n,na) reaction Calculated with CCONE code /5/. MT= 24 (n,2na) reaction Calculated with CCONE code /5/. MT= 28 (n,np) reaction Calculated with CCONE code /5/. MT= 32 (n,nd) reaction Calculated with CCONE code /5/. MT= 41 (n,2np) reaction Calculated with CCONE code /5/. MT= 51-91 (n,n') reaction Calculated with CCONE code /5/. MT=102 Capture reaction Calculated with CCONE code /5/. ***************************************************************** Nuclear Model Calculation with CCONE code /5/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,5 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./6/ (+) proton omp: Kunieda,S. et al./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: Huizenga,J.R. and Igo,G./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-115 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 + * 1 0.49733 3/2 + 2 0.61281 7/2 + 3 0.71364 11/2 - 4 0.98656 5/2 + 5 1.28028 3/2 + * 6 1.41690 5/2 + 7 1.63376 3/2 + 8 1.64352 9/2 + 9 1.64373 7/2 - 10 1.73406 5/2 + 11 1.78592 9/2 - 12 1.80500 11/2 + 13 1.82493 5/2 + 14 1.85740 7/2 + 15 1.94576 13/2 - 16 1.97400 1/2 + 17 1.99390 5/2 + 18 1.99653 11/2 + 19 2.02548 15/2 - 20 2.06015 5/2 + 21 2.07694 1/2 + 22 2.08427 9/2 + 23 2.15577 7/2 + 24 2.16476 1/2 + 25 2.19316 1/2 + 26 2.19660 1/2 + 27 2.20748 5/2 + 28 2.23027 1/2 + 29 2.26500 1/2 + 30 2.30200 1/2 + 31 2.31382 1/2 + 32 2.34743 11/2 - 33 2.35216 1/2 + 34 2.36520 1/2 + 35 2.37100 1/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-116 14.5525 2.2283 1.0766 0.6163 1.0296 5.9849 Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538 Sn-114 14.3397 2.2478 0.6810 0.6658 0.7718 6.5831 Sn-113 15.4000 1.1289 0.7517 0.6142 -0.2165 5.1009 In-115 13.8308 1.1190 2.4621 0.6294 -0.3710 5.1585 In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976 In-113 13.6257 1.1289 2.0526 0.6704 -0.5799 5.6037 In-112 14.0642 0.0000 1.6631 0.6172 -1.2351 3.7389 Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627 Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086 Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999 Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644 Cd-110 13.9128 2.2883 1.7183 0.7231 -0.0110 7.6874 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-116 -------------------------------------------------------- * E1: ER = 15.56 (MeV) EG = 5.08 (MeV) SIG = 271.00 (mb) * M1: ER = 8.41 (MeV) EG = 4.00 (MeV) SIG = 0.78 (mb) * E2: ER = 12.92 (MeV) EG = 4.72 (MeV) SIG = 2.72 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier (2006). 3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).