50-Sn-119 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5046 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT4,17,22,28,32,103-105) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 1.3 keV In JENDL-3.3, resonance parameters were based on Mughabghab et al./1/ Total spin J of some resonances was tentatively estimated with a random number method. Neutron orbital angular momentum L of some resonances was estimated with a method of Bollinger and Thomas/2/. Average radiation width of 90 meV and scattering radius of 6.0 fm were assumed from the systematics of measured values for neighboring nuclides. A negative resonance was added so as to reproduce the thermal capture and scattering cross sections given by Mughabghab et al. In JENDL-4, the values of J and L were reassigned on the basis of the work done by Georgiev et al./3/ Radiation widths of some levels were taken from the same literature /3/. Unresolved resonance region : 1.3 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 6.8704e+00 Elastic 4.6943e+00 n,gamma 2.1761e+00 5.5770e+00 n,alpha 8.5362e-11 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,4 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Kunieda,S. et al./7/ deuteron omp: Lohr,J.M. and Haeberli,W./8/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ alpha omp: Huizenga,J.R. and Igo,G./10/ (+) omp parameters were modified. 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/14/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/15/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /16/,/17/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-119 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 + * 1 0.02387 3/2 + 2 0.08953 11/2 - 3 0.78701 7/2 + 4 0.92051 3/2 + * 5 0.92139 5/2 + 6 1.06000 5/2 + 7 1.06240 7/2 - 8 1.08944 5/2 + 9 1.18773 5/2 + 10 1.21000 11/2 - 11 1.24971 1/2 + 12 1.30440 13/2 - 13 1.30930 15/2 - 14 1.35480 5/2 + 15 1.37880 13/2 - 16 1.39000 11/2 - 17 1.51000 3/2 - 18 1.55440 5/2 + 19 1.56200 3/2 + 20 1.57180 1/2 + 21 1.59000 5/2 + 22 1.61710 5/2 - 23 1.63300 3/2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-120 14.7000 2.1909 0.8820 0.6695 0.4967 6.8161 Sn-119 15.8000 1.1000 1.4670 0.5796 -0.2200 4.8655 Sn-118 14.7649 2.2094 1.1802 0.6386 0.7048 6.4391 Sn-117 15.0000 1.1094 1.4418 0.5905 -0.0864 4.7453 In-119 14.2400 1.1000 2.1477 0.6266 -0.3980 5.1833 In-118 14.6950 0.0000 2.5427 0.5650 -1.1604 3.4261 In-117 14.0356 1.1094 2.5136 0.6228 -0.3934 5.1460 In-116 14.8000 0.0000 2.5937 0.5594 -1.1570 3.3948 Cd-118 14.7649 2.2094 2.3367 0.6412 0.3136 6.8030 Cd-117 16.7000 1.1094 2.9235 0.6001 -1.1587 5.9328 Cd-116 14.5525 2.2283 2.7100 0.6353 0.3516 6.7335 Cd-115 16.4000 1.1190 3.1141 0.5877 -0.9615 5.6632 Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-120 -------------------------------------------------------- * E1: ER = 15.37 (MeV) EG = 5.10 (MeV) SIG = 285.00 (mb) ER = 6.20 (MeV) EG = 1.30 (MeV) SIG = 4.60 (mb) * M1: ER = 8.31 (MeV) EG = 4.00 (MeV) SIG = 1.59 (mb) * E2: ER = 12.77 (MeV) EG = 4.67 (MeV) SIG = 2.66 (mb) -------------------------------------------------------- References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968). 3) Georgiev, G.P. et al.: 94 Gatlinburg, p.299 (1994). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 11) Kalbach,C.: Phys. Rev. C33, 818 (1986). 12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).