50-Sn-122 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5055 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by K.Shibata. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF9/MT102) JENDL/AD-2017 adopted (MF10/MT16,28,103-105,107) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 80 keV In JENDL-3.3, resonance energies and neutron widths were based on mainly the data measured by Nakajima et al./1/ and partially those given by Mughabghab et al./2/ Neutron orbital angular momentum L of some resonances was estimated with a method of Bollinger and Thomas/4/. Averaged radiation width of 130 meV was assumed from the systematics of measured values for neighboring nuclides. Scattering radius was taken as 5.7 fm /2/. A negative resonance was added so as to reproduce the thermal capture cross section given by Mughabghab et al. In JENDL-4, the data above 13.2 keV were replaced with the ones obtained by Carlton et al./3/ A value of 130 meV was assumed for the radiation width. The upper boudary was extended to 80 keV. Unresolved resonance region : 80 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.8570e+00 Elastic 3.7174e+00 n,gamma 1.3959e-01 9.5440e-01 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,9 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Kunieda,S. et al./7/ deuteron omp: Lohr,J.M. and Haeberli,W./8/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ alpha omp: Huizenga,J.R. and Igo,G./10/ (+) omp parameters were modified. 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/14/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/15/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /16/,/17/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-122 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 1.14051 2 + * 2 2.08771 0 + 3 2.14206 4 + 4 2.15381 2 + 5 2.24581 5 - 6 2.33109 4 + 7 2.40903 7 - 8 2.41554 2 + 9 2.49267 3 - * 10 2.53033 0 + 11 2.55542 6 + 12 2.65137 5 - 13 2.65300 6 - 14 2.65700 3 + 15 2.67557 0 + 16 2.69004 8 + 17 2.73450 2 + 18 2.75101 5 - 19 2.76560 10 + 20 2.77555 2 + 21 2.83788 6 - 22 2.85547 4 - 23 2.86773 3 - 24 2.87979 2 + 25 2.94496 3 + 26 2.95912 4 + 27 2.97110 1 + 28 2.97339 4 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-123 15.9572 1.0820 -0.0224 0.6542 -0.5670 5.7354 Sn-122 15.1883 2.1729 0.1587 0.6646 0.6099 6.7179 Sn-121 14.9000 1.0909 0.9681 0.6514 -0.5137 5.5290 Sn-120 14.7000 2.1909 0.8820 0.6695 0.4967 6.8161 In-122 15.1132 0.0000 0.9721 0.6133 -1.2958 3.9041 In-121 14.4439 1.0909 1.3854 0.6275 -0.2553 5.0642 In-120 14.9043 0.0000 1.9246 0.6079 -1.4610 4.0000 In-119 14.2400 1.1000 2.1477 0.6266 -0.3980 5.1833 Cd-121 15.7486 1.0909 1.5385 0.6783 -1.3360 6.5598 Cd-120 14.9768 2.1909 1.6826 0.6507 0.3296 6.8575 Cd-119 15.5394 1.1000 2.5578 0.6443 -1.1874 6.1408 Cd-118 14.7649 2.2094 2.3367 0.6412 0.3136 6.8030 Cd-117 16.7000 1.1094 2.9235 0.6001 -1.1587 5.9328 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-123 -------------------------------------------------------- * E1: ER = 15.51 (MeV) EG = 4.88 (MeV) SIG = 278.46 (mb) * M1: ER = 8.24 (MeV) EG = 4.00 (MeV) SIG = 0.66 (mb) * E2: ER = 12.67 (MeV) EG = 4.63 (MeV) SIG = 2.61 (mb) -------------------------------------------------------- References 1) Nakajima, Y. et al.: Ann. Nucl. Energy, 17, 95 (1990). 2) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 3) Carlton, R.F. et al.: Phys. Rev., C52, 1498 (1995). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 11) Kalbach,C.: Phys. Rev. C33, 818 (1986). 12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).