50-Sn-123 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5058 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,102-107) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances No resolved resonance parameters Unresolved resonance region : 50.0 eV - 150 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 7.8426e+00 Elastic 4.8201e+00 n,gamma 3.0012e+00 1.5368e+01 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 32 (n,nd) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 32 (n,nd) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Kunieda,S. et al./4/ deuteron omp: Lohr,J.M. and Haeberli,W./5/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/ alpha omp: Huizenga,J.R. and Igo,G./7/ (+) omp parameters were modified. 2) Two-component exciton model/8/ * Global parametrization of Koning-Duijvestijn/9/ was used. * Gamma emission channel/10/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/11/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/12/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /13/,/14/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-123 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 11/2 - 1 0.02460 3/2 + 2 0.15040 1/2 + 3 0.61881 9/2 - 4 0.87020 3/2 + 5 0.91980 3/2 + 6 0.93140 7/2 - 7 1.04430 7/2 + 8 1.07210 3/2 + 9 1.10700 15/2 - 10 1.10900 9/2 + 11 1.13630 7/2 + 12 1.15500 7/2 + 13 1.19440 5/2 + 14 1.21700 13/2 - 15 1.30100 5/2 + ------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-124 15.3994 2.1553 -1.0033 0.7260 0.3147 7.5454 Sn-123 15.9572 1.0820 -0.0224 0.6542 -0.5670 5.7354 Sn-122 15.1883 2.1729 0.1587 0.6646 0.6099 6.7179 Sn-121 14.9000 1.0909 0.9681 0.6514 -0.5137 5.5290 In-123 14.6475 1.0820 0.1996 0.6115 0.1625 4.5397 In-122 15.1132 0.0000 0.9721 0.6133 -1.2958 3.9041 In-121 14.4439 1.0909 1.3854 0.6275 -0.2553 5.0642 In-120 14.9043 0.0000 1.9246 0.6079 -1.4610 4.0000 Cd-122 15.1883 2.1729 0.5773 0.6134 0.9712 5.9920 Cd-121 15.7486 1.0909 1.5385 0.6783 -1.3360 6.5598 Cd-120 14.9768 2.1909 1.6826 0.6507 0.3296 6.8575 Cd-119 15.5394 1.1000 2.5578 0.6443 -1.1874 6.1408 Cd-118 14.7649 2.2094 2.3367 0.6412 0.3136 6.8030 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-124 -------------------------------------------------------- * E1: ER = 15.28 (MeV) EG = 4.80 (MeV) SIG = 276.00 (mb) * M1: ER = 8.22 (MeV) EG = 4.00 (MeV) SIG = 0.68 (mb) * E2: ER = 12.63 (MeV) EG = 4.62 (MeV) SIG = 2.60 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 6) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 8) Kalbach,C.: Phys. Rev. C33, 818 (1986). 9) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 10) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 11) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 12) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 13) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 14) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).