50-Sn-126 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5067 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,102-107) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances No resolved resonance parameters Unresolved resonance region : 6.8 keV - 200 keV The unresolved resonance paramters (URP) were determined by ASREP code /1/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /2/ and CCONE /3/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.9138e+00 Elastic 4.8197e+00 n,gamma 9.0035e-02 9.6380e-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /3/. MT= 16 (n,2n) cross section Calculated with CCONE code /3/. MT= 17 (n,3n) cross section Calculated with CCONE code /3/. MT= 22 (n,na) cross section Calculated with CCONE code /3/. MT= 28 (n,np) cross section Calculated with CCONE code /3/. MT= 51-91 (n,n') cross section Calculated with CCONE code /3/. MT=102 Capture cross section Calculated with CCONE code /3/. MT=103 (n,p) cross section Calculated with CCONE code /3/. MT=104 (n,d) cross section Calculated with CCONE code /3/. MT=105 (n,t) cross section Calculated with CCONE code /3/. MT=106 (n,He3) cross section Calculated with CCONE code /3/. MT=107 (n,a) cross section Calculated with CCONE code /3/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /3/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /3/. MT= 17 (n,3n) reaction Calculated with CCONE code /3/. MT= 22 (n,na) reaction Calculated with CCONE code /3/. MT= 28 (n,np) reaction Calculated with CCONE code /3/. MT= 51-91 (n,n') reaction Calculated with CCONE code /3/. MT=102 Capture reaction Calculated with CCONE code /3/. ***************************************************************** Nuclear Model Calculation with CCONE code /3/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./4/ (+) proton omp: Kunieda,S. et al./4/ deuteron omp: Lohr,J.M. and Haeberli,W./5/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/ alpha omp: Huizenga,J.R. and Igo,G./7/ (+) omp parameters were modified. 2) Two-component exciton model/8/ * Global parametrization of Koning-Duijvestijn/9/ was used. * Gamma emission channel/10/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/11/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/12/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /13/,/14/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Sn-126 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 1.14115 2 + * 2 2.04974 4 + 3 2.11079 2 + 4 2.13009 2 + 5 2.16154 5 - 6 2.19422 4 - 7 2.21899 7 - 8 2.25652 3 - 9 2.27685 2 + 10 2.29800 1 + 11 2.37046 2 + 12 2.47193 4 + 13 2.47751 6 - 14 2.48824 8 + 15 2.55000 3 - 16 2.56450 10 + 17 2.63103 3 + 18 2.63664 2 + 19 2.66298 7 + 20 2.71206 4 + 21 2.72000 3 - 22 2.74257 1 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Sn-127 16.3728 1.0648 -3.3108 0.7888 -0.7788 7.5329 Sn-126 15.6101 2.1381 -2.6047 0.8273 -0.2048 9.2786 Sn-125 16.1653 1.0733 -1.4420 0.6783 -0.3617 5.7801 Sn-124 15.3994 2.1553 -1.0033 0.7260 0.3147 7.5454 In-126 15.5298 0.0000 -2.3056 0.6831 -0.9476 4.1443 In-125 14.8507 1.0733 -1.3884 0.6557 0.2272 4.7782 In-124 15.3217 0.0000 -0.3915 0.6954 -1.7265 4.9806 In-123 14.6475 1.0820 0.1996 0.6115 0.1625 4.5397 Cd-124 15.3994 2.1553 -0.6710 0.6750 0.7153 6.7076 Cd-123 15.9572 1.0820 0.4830 0.7005 -1.2943 6.7635 Cd-122 15.1883 2.1729 0.5773 0.6134 0.9712 5.9920 Cd-121 15.7486 1.0909 1.5385 0.6783 -1.3360 6.5598 -------------------------------------------------------- Table 3. Gamma-ray strength function for Sn-127 -------------------------------------------------------- * E1: ER = 15.39 (MeV) EG = 4.82 (MeV) SIG = 288.56 (mb) * M1: ER = 8.16 (MeV) EG = 4.00 (MeV) SIG = 0.65 (mb) * E2: ER = 12.53 (MeV) EG = 4.59 (MeV) SIG = 2.56 (mb) -------------------------------------------------------- References 1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 5) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 6) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962). 8) Kalbach,C.: Phys. Rev. C33, 818 (1986). 9) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 10) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 11) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 12) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 13) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 14) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).