52-Te-119MJAEA EVAL-Sep21 N.Iwamoto DIST-DEC21 20210920 ----JENDL-5 MATERIAL 5223 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-10 Evaluated with CCONE code by N.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 6.85 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.97434E+01 Elastic 5.92198E+00 Inelas 2.82251E-06 5.64796E-04 n,gamma 1.36019E+01 4.44268E+02 n,p 4.01463E-03 1.30756E-01 n,alpha 1.74120E-03 5.70149E-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT= 44 (n,n2p) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 2.31 eV the 1/v cross section was assumed. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MT=111 (n,2p) cross section Calculated with CCONE code /1/. MT=112 (n,pa) cross section Calculated with CCONE code /1/. MT=115 (n,pd) cross section Calculated with CCONE code /1/. MT=116 (n,pt) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 44 (n,n2p) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=111 (n,2p) reaction Calculated with CCONE code /1/. MT=112 (n,pa) reaction Calculated with CCONE code /1/. MT=115 (n,pd) reaction Calculated with CCONE code /1/. MT=116 (n,pt) reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT= 44 (n,n2p) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MT=111 (n,2p) reaction Decay chain is given in the decay data file. MT=112 (n,pa) reaction Decay chain is given in the decay data file. MT=115 (n,pd) reaction Decay chain is given in the decay data file. MT=116 (n,pt) reaction Decay chain is given in the decay data file. MF= 9 Isomeric branching ratios MT=112 (n,pa) reaction Calculated with CCONE code /1/. MF=10 Nuclide production reactions MT= 4 (n,n') reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 44 (n,n2p) reaction Calculated with CCONE code /1/. MT=104 (n,d) reaction Calculated with CCONE code /1/. MT=106 (n,He3) reaction Calculated with CCONE code /1/. MT=115 (n,pd) reaction Calculated with CCONE code /1/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : M.Avrigeanu and V.Avrigeanu/7/ * Level scheme of Te-119 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1/2 + 1 0.257480 3/2 + 2 0.260960 11/2 - 3 0.320510 5/2 + 4 0.360390 7/2 + 5 0.467960 9/2 - 6 0.501100 7/2 - 7 0.557170 5/2 + 8 0.598180 3/2 + 9 0.635860 5/2 + 10 0.661270 7/2 - 11 0.669310 7/2 + 12 0.703080 7/2 + 13 0.707680 1/2 + 14 0.723990 3/2 + 15 0.743080 9/2 - 16 0.747000 3/2 + 17 0.766600 5/2 - 18 0.771700 5/2 - 19 0.813310 5/2 + 20 0.877450 5/2 + 21 0.889070 3/2 + 22 0.901000 5/2 - 23 0.901260 15/2 - 24 0.906000 7/2 + 25 0.945920 9/2 + 26 0.957100 5/2 + 27 0.964210 3/2 + 28 0.979960 13/2 - 29 0.984600 7/2 + 30 0.994410 7/2 - 31 1.003990 1/2 + 32 1.055600 7/2 + 33 1.092600 9/2 + 34 1.104870 9/2 + 35 1.113570 5/2 + 36 1.132100 1/2 + 37 1.154700 1/2 - 38 1.162320 7/2 - 39 1.184790 5/2 - 40 1.189000 9/2 + ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Te-120 15.300 2.191 2.180 0.554 0.989 5.626 2.653 Te-119 15.196 1.100 2.610 0.658 -1.347 6.277 1.401 Te-118 15.091 2.209 2.070 0.627 0.356 6.674 1.662 Te-117 14.987 1.109 2.332 0.609 -0.604 5.313 1.094 Sb-119 15.196 1.100 2.041 0.506 0.364 3.794 1.970 Sb-118 15.091 0.000 2.138 0.555 -1.145 3.362 1.405 Sb-117 14.987 1.109 1.858 0.533 0.245 4.065 1.624 Sb-116 14.882 0.000 1.720 0.513 -0.657 2.625 1.386 Sn-118 14.203 2.209 1.183 0.670 0.530 6.767 3.089 Sn-117 14.295 1.109 1.444 0.621 -0.210 5.000 1.770 Sn-116 14.882 2.228 1.079 0.579 1.207 5.615 3.416 Sn-115 14.206 1.119 1.008 0.602 0.117 4.579 2.230 Sn-114 14.672 2.248 0.682 0.628 0.960 6.199 3.297 Sn-113 14.860 1.129 0.757 0.615 -0.129 4.972 2.105 --------------------------------------------------------- * Gamma-ray strength functions for Te-120 E1: hybrid model(GH)/10/ ER= 15.60 (MeV) EG= 4.94 (MeV) SIG= 273.46 (mb) M1: standard lorentzian model(SLO) ER= 8.31 (MeV) EG= 4.00 (MeV) SIG= 0.93 (mb) E2: standard lorentzian model(SLO) ER= 12.77 (MeV) EG= 4.67 (MeV) SIG= 2.87 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) M.Avrigeanu and V.Avrigeanu, Phys. Rev. C82, 014606 (2010) 8) A.Gilbert and A.G.W.Cameron, Can. J. Phys, 43, 1446 (1965) 9) A.Mengoni and Y.Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S.Goriely, Phys. Lett. B436, 10 (1998)