52-Te-120 EVAL-Oct13 K.Shibata (JAEA) JNST 52, 490 (2015) DIST-DEC21 20180704 ----JENDL-5 MATERIAL 5225 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2013-10 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance is given. Unresolved resonance region: 32 eV - 300 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 4.8293E+00 Elastic 4.1762E+00 n,gamma 6.5627E-01 5.2796E+01 n,alpha 4.3561E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. Below 32 eV, the cross section is given by 4.0*pi*R**2, where R was estimated in the unresolved resonance region. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 32 eV. The thermal cross section was normalized to a value of 0.656 b, which was obtained by Eastman and Krane./3/ MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 32 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT=102 Capture reaction Calculated with CCONE code /2/. Isomeric ratios were adjusted so as to reproduce the data measured by Eastman and Krane. /3/ MT=107 (n,a) reaction Calculated with CCONE code /2/. MF=10 Nuclide production cross sections MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=103 (n,p) reaction Calculated with CCONE code /2/. MT=105 (n,t) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/4/ deuteron: J.M.Lohr and W.Haeberli/5/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/6/ neutron : S. Kunieda et al./7/ proton : A.J.Koning and J.P.Delaroche/8/ triton : F.D.Becchetti Jr. and G.W.Greenlees/6/ Note that the imaginary part of the neutron potentials were modified, i.e., W_D^DISP=9.8 MeV and W_V^DISP=23.0 MeV. * Level scheme of Te-120 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.560440 2 + c 2 1.103100 0 + 3 1.161560 4 + c 4 1.201270 2 + 5 1.535080 2 + 6 1.613400 0 + 7 1.776230 6 + c 8 1.815120 4 + 9 1.863290 3 + 10 1.924400 2 + 11 1.936600 1 + 12 2.083060 3 - 13 2.201480 6 + 14 2.358000 4 + 15 2.423100 4 + 16 2.428100 5 - 17 2.445600 2 - 18 2.455800 1 + 19 2.461370 3 - d 20 2.519900 6 + 21 2.567300 4 - ----------------------- c: coupled-channel calc., d: DWBA calc. * Level density parameters (Gilbert-Cameron model/9/) Energy dependent parameters of Mengoni-Nakajima/10/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Te-121 15.405 1.091 2.469 0.665 -1.463 6.440 1.173 Te-120 15.300 2.191 2.144 0.553 1.012 5.595 2.567 Te-119 15.196 1.100 2.607 0.641 -1.135 5.983 1.185 Te-118 15.091 2.209 2.046 0.660 -0.016 7.222 1.517 Sb-120 15.300 0.000 2.181 0.525 -0.944 3.017 0.858 Sb-119 15.196 1.100 2.038 0.603 -0.521 5.218 1.547 Sb-118 15.091 0.000 2.134 0.578 -1.370 3.718 0.890 Sn-118 15.091 2.209 1.180 0.612 0.795 6.211 3.057 Sn-117 14.987 1.109 1.442 0.611 -0.344 5.115 1.710 Sn-116 14.882 2.228 1.077 0.624 0.794 6.301 3.315 --------------------------------------------------------- * Gamma-ray strength functions for Te-121 E1: modified lorentzian model(MLO1)/11/ ER= 15.57 (MeV) EG= 4.92 (MeV) SIG= 276.22 (mb) M1: standard lorentzian model(SLO) ER= 8.29 (MeV) EG= 4.00 (MeV) SIG= 1.56 (mb) E2: standard lorentzian model(SLO) ER= 12.74 (MeV) EG= 4.66 (MeV) SIG= 2.86 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 490 (2015). 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) M.C.Eastman and K.S.Krane, Phys. Rev. C77, 024303 (2008). 4) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 5) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 6) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 10) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 11) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).