52-Te-123 EVAL-Oct13 K.Shibata (JAEA) JNST 52, 490 (2015) DIST-DEC21 20180705 ----JENDL-5 MATERIAL 5234 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2013-10 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 700 eV Resonance parameters were based on Mughabghab et al./2/ total spin J of some resonances was tentatively estimated with a random number method. Neutron orbital angular momentum L was estimated with a method of Bollinger and Thomas/3/. Averaged radiation width was deduced to be 107 meV, and applied to the levels whose radiation width was unknown. The scattering radius was also taken from Mughabghab et al. Unresolved resonance region : 0.7 keV - 200 keV The parameters were obtained by fitting to the total and capture cross sections calculated from CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 4.1900E+02 Elastic 5.9228E-01 n,gamma 4.1839E+02 5.6470E+03 n,alpha 1.6333E-02 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /4/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. Below 70 eV, the cross sections should be calculated from RRPs. MT=103,600-649 (n,p) cross section Calculated with CCONE code /4/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /4/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /4/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /4/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /4/. 1/v cross sections were assumed below 11 keV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross section by the ratio of the CCONE calculations ( sig_na / sig_capture ) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT=51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. MT=600-649 (n,p) reaction Calculated with CCONE code /4/. MT=650-699 (n,d) reaction Calculated with CCONE code /4/. MT=700-749 (n,t) reaction Calculated with CCONE code /4/. MT=750-799 (n,He3) reaction Calculated with CCONE code /4/. MT=800-849 (n,a) reaction Calculated with CCONE code /4/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT=104 (n,d) reaction Calculated with CCONE code /4/. MT=106 (n,He3) reaction Calculated with CCONE code /4/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /4/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/5/ deuteron: J.M.Lohr and W.Haeberli/6/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/7/ neutron : S. Kunieda et al./8/ proton : A.J.Koning and J.P.Delaroche/9/ triton : F.D.Becchetti Jr. and G.W.Greenlees/7/ * Level scheme of Te-123 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1/2 + 1 0.159020 3/2 + 2 0.247470 11/2 - 3 0.384350 7/2 - 4 0.439990 3/2 + c 5 0.489810 7/2 + 6 0.505370 5/2 + c 7 0.532690 7/2 - 8 0.599120 1/2 + 9 0.687970 3/2 + 10 0.697550 7/2 + 11 0.769270 3/2 - 12 0.783610 5/2 + 13 0.862130 5/2 - 14 0.871210 3/2 + 15 0.879670 7/2 - 16 0.886860 15/2 - 17 0.894780 5/2 + 18 0.919790 13/2 - 19 0.996060 5/2 - 20 1.036670 3/2 + 21 1.068190 3/2 + 22 1.081700 7/2 + 23 1.097790 5/2 - 24 1.138600 7/2 + 25 1.153000 5/2 + 26 1.210000 7/2 - 27 1.212510 9/2 + 28 1.244360 9/2 + 29 1.254000 7/2 + 30 1.268000 5/2 + 31 1.318120 1/2 + 32 1.327630 3/2 + 33 1.330000 9/2 + 34 1.344780 3/2 - 35 1.353700 5/2 + 36 1.414180 5/2 + 37 1.418000 7/2 - 38 1.422830 3/2 + 39 1.427000 9/2 + ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/10/) Energy dependent parameters of Mengoni-Nakajima/11/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Te-124 15.717 2.155 1.308 0.643 0.178 6.962 2.483 Te-123 15.613 1.082 1.993 0.629 -0.932 5.774 1.427 Te-122 15.509 2.173 1.907 0.589 0.655 6.145 2.204 Te-121 15.405 1.091 2.469 0.665 -1.463 6.440 1.173 Sb-123 15.613 1.082 1.087 0.541 0.216 4.154 1.896 Sb-122 15.509 0.000 1.676 0.572 -1.283 3.652 0.748 Sb-121 15.405 1.091 1.842 0.540 0.082 4.271 2.048 Sn-121 15.405 1.091 0.968 0.597 -0.188 4.903 1.571 Sn-120 15.300 2.191 0.882 0.621 0.725 6.337 2.931 Sn-119 15.196 1.100 1.467 0.611 -0.426 5.202 1.633 --------------------------------------------------------- * Gamma-ray strength functions for Te-124 E1: modified lorentzian model(MLO1)/12/ ER= 15.48 (MeV) EG= 4.87 (MeV) SIG= 284.35 (mb) M1: standard lorentzian model(SLO) ER= 8.22 (MeV) EG= 4.00 (MeV) SIG= 1.53 (mb) E2: standard lorentzian model(SLO) ER= 12.63 (MeV) EG= 4.62 (MeV) SIG= 2.81 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 490 (2015). 2) S.F. Mughabghab et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 3) L.M. Bollinger and G.E. Thomas: Phys. Rev., 171,1293 (1968). 4) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 5) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 6) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 7) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 9) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 10) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 11) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 12) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).