52-Te-125 EVAL-Oct13 K.Shibata (JAEA) JNST 52, 490 (2015) DIST-DEC21 20180705 ----JENDL-5 MATERIAL 5240 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2013-10 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 7 keV For JENDL-3.1, resonance parameters were based on Mughabghab et al./2/ Total spin J of some resonances was tentatively estimated with a random number method. Neutron orbital angular momentum L was estimated with a method of Bollinger and Thomas/3/. Averaged radiation width was deduced to be 150 meV, and applied to the levels whose radiation width was unknown. A negative resonance was added and its parameters were adjusted together with scattering radius (6.0 fm) so as to reproduce the thermal capture and scattering cross sections given by Mughabghab et al. For JENDL-3.2, neutron and radiation width were determined from the neutron widths measured by Tellier et al./4/ and the capture area data by Macklin and Winters/5/ in the energy range above 2.7 keV. The average radiation width of 0.1075 eV given by Macklin and Winters was applied to the levels whose radiation width had not been determined from the experiments. The average value of 0.15 eV of jendl-3.1 was replaced with 0.1075 eV. In JENDL-4, the energy of a negative resoannce was changed to -31.45 eV from -28.9 eV so as reproduce the thermal capture cross section measured by Tomandl et al./6/ RRPs remain unchanged from JENDL-4.0 for JENDL-4.0p1. Unresolved resonance region : 7 keV - 300 keV The parameters were obtained by fitting to the total and capture cross sections calculated from CCONE /7/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 4.7080E+00 Elastic 3.4153E+00 n,gamma 1.2927E+00 2.1960E+01 n,alpha 2.3339E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /7/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /7/. MT= 16 (n,2n) cross section Calculated with CCONE code /7/. MT= 17 (n,3n) cross section Calculated with CCONE code /7/. MT= 22 (n,na) cross section Calculated with CCONE code /7/. MT= 28 (n,np) cross section Calculated with CCONE code /7/. MT= 32 (n,nd) cross section Calculated with CCONE code /7/. MT= 41 (n,2np) cross section Calculated with CCONE code /7/. MT=102 Capture cross section Calculated with CCONE code /7/. Below 7 keV, the cross sections should be calculated from RRPs. MT=103,600-649 (n,p) cross section Calculated with CCONE code /7/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /7/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /7/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /7/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /7/. 1/v cross sections were assumed below 7 keV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross section by the ratio of the CCONE calculations ( sig_na / sig_capture ) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /7/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT= 32 (n,nd) reaction Calculated with CCONE code /7/. MT= 41 (n,2np) reaction Calculated with CCONE code /7/. MT=51-91 (n,n') reaction Calculated with CCONE code /7/. MT=102 Capture reaction Calculated with CCONE code /7/. MT=600-649 (n,p) reaction Calculated with CCONE code /7/. MT=650-699 (n,d) reaction Calculated with CCONE code /7/. MT=700-749 (n,t) reaction Calculated with CCONE code /7/. MT=750-799 (n,He3) reaction Calculated with CCONE code /7/. MT=800-849 (n,a) reaction Calculated with CCONE code /7/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /7/. MT= 17 (n,3n) reaction Calculated with CCONE code /7/. MT= 22 (n,na) reaction Calculated with CCONE code /7/. MT= 28 (n,np) reaction Calculated with CCONE code /7/. MT=104 (n,d) reaction Calculated with CCONE code /7/. MT=106 (n,He3) reaction Calculated with CCONE code /7/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /7/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/8/ deuteron: J.M.Lohr and W.Haeberli/9/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/10/ neutron : S. Kunieda et al./11/ proton : A.J.Koning and J.P.Delaroche/12/ triton : F.D.Becchetti Jr. and G.W.Greenlees/10/ * Level scheme of Te-125 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1/2 + 1 0.035490 3/2 + 2 0.144770 11/2 - 3 0.321090 9/2 - 4 0.402090 7/2 + 5 0.443560 3/2 + c 6 0.463370 5/2 + c 7 0.525230 7/2 - 8 0.537850 1/2 + 9 0.636090 7/2 + 10 0.642210 7/2 + 11 0.652900 5/2 - 12 0.671440 5/2 + 13 0.729230 3/2 + 14 0.786580 7/2 - 15 0.804600 15/2 - 16 0.840910 15/2 - 17 1.017730 7/2 + 18 1.029400 9/2 + 19 1.053850 3/2 + 20 1.066310 5/2 + 21 1.071870 5/2 - 22 1.091400 3/2 + 23 1.133330 3/2 + 24 1.148700 9/2 + 25 1.191730 11/2 + 26 1.209610 9/2 + 27 1.242820 5/2 + 28 1.245620 5/2 + 29 1.265170 3/2 + 30 1.310510 15/2 - 31 1.314600 9/2 + 32 1.319540 3/2 - 33 1.322330 5/2 - ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/13/) Energy dependent parameters of Mengoni-Nakajima/14/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Te-126 15.924 2.138 0.364 0.662 0.232 7.099 2.812 Te-125 15.820 1.073 1.249 0.664 -1.161 6.275 1.322 Te-124 15.717 2.155 1.308 0.643 0.178 6.962 2.483 Te-123 15.613 1.082 1.993 0.629 -0.932 5.774 1.427 Sb-125 15.820 1.073 -0.073 0.472 0.909 2.998 2.299 Sb-124 15.717 0.000 0.761 0.590 -1.233 3.766 0.804 Sb-123 15.613 1.082 1.087 0.541 0.216 4.154 1.896 Sn-123 15.613 1.082 -0.022 0.693 -0.917 6.354 1.301 Sn-122 15.509 2.173 0.159 0.609 1.011 5.990 3.036 Sn-121 15.405 1.091 0.968 0.597 -0.188 4.903 1.571 --------------------------------------------------------- * Gamma-ray strength functions for Te-126 E1: modified lorentzian model(MLO1)/15/ ER= 15.42 (MeV) EG= 4.83 (MeV) SIG= 289.68 (mb) M1: standard lorentzian model(SLO) ER= 8.18 (MeV) EG= 4.00 (MeV) SIG= 1.51 (mb) E2: standard lorentzian model(SLO) ER= 12.57 (MeV) EG= 4.60 (MeV) SIG= 2.78 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 490 (2015). 2) S.F. Mughabghab et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 3) L.M. Bollinger and G.E. Thomas: Phys. Rev., 171,1293(1968). 4) H. Tellier and C.M. Newstedd: Proc. 3rd Int. Conf. on Neutron Cross Sections and Technol., Knoxville, March 1971, p.680 (1971). 5) R.L. Macklin and R.R. Winters: ORNL-6561 (1988). 6) I. Tomandl: Phys. Rev., C68, 067602 (2003). 7) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 8) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 9) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 10) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 12) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 13) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 14) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 15) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).