52-Te-128 EVAL-Oct13 K.Shibata (JAEA) JNST 52, 490 (2015) DIST-DEC21 20180706 ----JENDL-5 MATERIAL 5249 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2013-10 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 8 keV Neutron widths were adopted from experimental data of Tellier et al./2/, and radiative capture widths from capture areas measured by Browne and Berman/3/. For the resonances above 7 keV, the average radiation width of 0.048 +-0.025 eV was assumed. A negative resonance was added at -600 eV so as to reproduce the thermal capture cross section of 0.215+-0.008 barns/4/. The effective scattering radius of 5.5 fm was taken from ref./4/ In JENDL-4, the radiation width of the negative resonance was changed to 166.4 meV so as to reproduce the thermal capture cross section measured by Wirth et al./5/ Unresolved resonance region : 8 keV - 300 keV The parameters were obtained by fitting to the total and capture cross sections calculated from CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 4.3015E+00 Elastic 4.1154E+00 n,gamma 1.8607E-01 1.2876E+00 n,alpha 1.5844E-22 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /6/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 41 (n,2np) cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. Below 8 keV, the cross sections should be calculated from RRPs. MT=103,600-649 (n,p) cross section Calculated with CCONE code /6/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /6/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /6/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /6/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /6/. 1/v cross sections were assumed below 8 keV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross section by the ratio of the CCONE calculations ( sig_na / sig_capture ) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 41 (n,2np) reaction Calculated with CCONE code /6/. MT=51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. MT=600-649 (n,p) reaction Calculated with CCONE code /6/. MT=650-699 (n,d) reaction Calculated with CCONE code /6/. MT=700-749 (n,t) reaction Calculated with CCONE code /6/. MT=750-799 (n,He3) reaction Calculated with CCONE code /6/. MT=800-849 (n,a) reaction Calculated with CCONE code /6/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT=102 Capture reaction Calculated with CCONE code /6/. MT=107 (n,a) reaction Calculated with CCONE code /6/. MF=10 Nuclide production cross sections MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 41 (n,2np) reaction Calculated with CCONE code /6/. MT=103 (n,p) reaction Calculated with CCONE code /6/. MT=105 (n,t) reaction Calculated with CCONE code /6/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /6/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/7/ deuteron: J.M.Lohr and W.Haeberli/8/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/9/ neutron : S. Kunieda et al./10/ proton : A.J.Koning and J.P.Delaroche/11/ triton : F.D.Becchetti Jr. and G.W.Greenlees/9/ * Level scheme of Te-128 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 0 + 1 0.743220 2 + c 2 1.497040 4 + c 3 1.519970 2 + 4 1.811160 6 + c 5 1.968510 3 + 6 1.972000 3 - 7 1.978810 0 + 8 2.027780 4 + 9 2.133300 5 - 10 2.163530 3 + 11 2.193490 2 + 12 2.217950 1 + 13 2.270350 3 + 14 2.308310 4 - 15 2.337730 7 - 16 2.352110 2 + 17 2.395930 4 - 18 2.405360 6 + 19 2.426020 5 + 20 2.440000 3 - 21 2.485000 3 - 22 2.487410 3 + 23 2.494170 3 - d 24 2.508060 2 + 25 2.520000 2 + 26 2.550540 3 + 27 2.571180 5 - 28 2.588000 6 + 29 2.599020 5 + 30 2.630140 1 + 31 2.643280 4 - 32 2.655600 5 - 33 2.665000 6 - 34 2.689400 8 + 35 2.706660 2 + 36 2.712230 1 - 37 2.720000 1 - 38 2.736500 5 - 39 2.748730 3 - ----------------------- c: coupled-channel calc., d: DWBA calc. * Level density parameters (Gilbert-Cameron model/12/) Energy dependent parameters of Mengoni-Nakajima/13/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Te-129 16.234 1.057 -1.461 0.737 -1.056 7.086 1.110 Te-128 16.131 2.121 -0.941 0.739 -0.223 8.301 2.749 Te-127 16.028 1.065 0.102 0.681 -0.999 6.359 1.568 Te-126 15.924 2.138 0.364 0.662 0.232 7.099 2.812 Sb-128 16.131 0.000 -2.378 0.581 -0.287 2.810 0.833 Sb-127 16.028 1.065 -1.606 0.695 -0.435 6.078 2.325 Sb-126 15.924 0.000 -0.622 0.726 -2.250 5.898 0.128 Sn-126 15.924 2.138 -2.605 0.784 0.189 8.613 2.795 Sn-125 15.820 1.073 -1.442 0.708 -0.554 6.273 1.259 Sn-124 15.717 2.155 -1.003 0.664 0.824 6.637 3.011 --------------------------------------------------------- * Gamma-ray strength functions for Te-129 E1: modified lorentzian model(MLO1)/14/ ER= 15.33 (MeV) EG= 4.78 (MeV) SIG= 297.52 (mb) M1: standard lorentzian model(SLO) ER= 8.11 (MeV) EG= 4.00 (MeV) SIG= 1.49 (mb) E2: standard lorentzian model(SLO) ER= 12.47 (MeV) EG= 4.56 (MeV) SIG= 2.74 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 490 (2015). 2) H. Tellier, et al.: CEA-N-1268 (1970). 3) J.C. Browne and B.L. Berman: Phys. Rev., C8, 2405 (1973). 4) S.F. Mughabghab et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 5) H.-F. Wirth et al.: Nucl. Phys., A716, 3 (2003). 6) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 7) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 8) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 9) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 11) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 12) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 13) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 14) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).