52-Te-131M EVAL-Oct13 K.Shibata (JAEA) JNST 52, 490 (2015) DIST-DEC21 20180709 ----JENDL-5 MATERIAL 5259 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2013-10 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance is given. Unresolved resonance region: 200 eV - 100 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 3.3152E+00 Elastic 3.1509E+00 Inelas 6.1699E-03 n,gamma 1.5648E-01 3.9120E+00 n,alpha 4.1930E-15 Inelas g 6.1673E-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. Below 200 eV, the cross section is given by 4.0*pi*R**2, where R was estimated in the unresolved resonance region. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. For MT=51,91, 1/v cross sections were assumed below 200 eV, and thermal cross sections were determined in the same manner as the (n,a) reaction. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 200 eV. The thermal cross section was normalized to a value of 0.15641 b, which was obtained by a simplified formula /3/. MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 200 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture ) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT=107 (n,a) reaction Calculated with CCONE code /2/. MF=10 Nuclide production cross sections MT=4 (n,n') reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=104 (n,d) reaction Calculated with CCONE code /2/. MT=105 (n,t) reaction Calculated with CCONE code /2/. MT=106 (n,He3) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/4/ deuteron: J.M.Lohr and W.Haeberli/5/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/6/ neutron : S. Kunieda et al./7/ proton : A.J.Koning and J.P.Delaroche/8/ triton : F.D.Becchetti Jr. and G.W.Greenlees/6/ * Level scheme of Te-131 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 3/2 + 1 0.182260 11/2 - c 2 0.296020 1/2 + 3 0.642330 5/2 + 4 0.776900 1/2 - 5 0.802210 9/2 - 6 0.854400 3/2 + 7 0.880310 7/2 - 8 0.943430 7/2 + 9 1.014960 13/2 - c 10 1.041680 1/2 + 11 1.050830 3/2 + 12 1.207140 5/2 + 13 1.267500 5/2 + 14 1.398900 3/2 + 15 1.400000 9/2 - 16 1.469680 5/2 + 17 1.579700 17/2 - 18 1.601810 3/2 + 19 1.659420 7/2 - 20 1.669810 7/2 + 21 1.678260 1/2 - 22 1.683010 5/2 + 23 1.721640 5/2 + 24 1.755940 5/2 - 25 1.781150 3/2 - 26 1.787900 7/2 - 27 1.841900 7/2 - 28 1.852400 9/2 - 29 1.855780 1/2 + 30 1.867000 7/2 - 31 1.876410 7/2 + 32 1.916600 9/2 - 33 1.940000 23/2 + 34 1.951620 3/2 - ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/9/) Energy dependent parameters of Mengoni-Nakajima/10/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Te-132 16.543 2.089 -4.646 0.879 -0.096 10.944 3.015 Te-131 16.441 1.048 -3.422 0.828 -1.216 8.719 1.952 Te-130 16.337 2.105 -2.610 0.813 -0.401 9.581 2.878 Te-129 16.234 1.057 -1.461 0.737 -1.056 7.086 1.110 Sb-131 16.441 1.048 -5.794 0.992 -1.873 13.703 2.166 Sb-130 16.337 0.000 -4.508 0.871 -2.060 8.454 1.097 Sb-129 16.234 1.057 -3.542 0.810 -0.811 8.051 2.263 Sn-129 16.234 1.057 -5.562 0.907 -0.654 10.277 1.222 Sn-128 16.131 2.121 -4.644 0.904 -0.163 11.371 2.642 Sn-127 16.028 1.065 -3.311 0.834 -1.134 8.601 1.243 --------------------------------------------------------- * Gamma-ray strength functions for Te-132 E1: modified lorentzian model(MLO1)/11/ ER= 15.25 (MeV) EG= 4.73 (MeV) SIG= 305.21 (mb) M1: standard lorentzian model(SLO) ER= 8.05 (MeV) EG= 4.00 (MeV) SIG= 1.47 (mb) E2: standard lorentzian model(SLO) ER= 12.37 (MeV) EG= 4.53 (MeV) SIG= 2.69 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 490 (2015). 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) K.Shibata, J. Nucl Sci. Technol., 51, 425 (2014). 4) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 5) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 6) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 10) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 11) V.A. Plujko et al., J. Nucl. Sci. Technol.(supp. 2), 811 (2002).