53-I -127 EVAL-Sep14 K.Shibata (JAEA) JNST 52, 1174 (2015) DIST-DEC21 20180718 ----JENDL-5 MATERIAL 5325 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2014-09 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (RM formula): below 5.2 keV The present evaluation is based on the JEFF-3.1 data obtained by Noguere et al./2/ The energy of a negative resonance was changed to -39.25 eV so as to reproduce the the thermal capture cross section of 6.40+-0.29 b measured by Katoh et al./3/ The RRPs remain unchanged from JENDL-4.0. Unresolved resonance region : 5.2 keV - 200 keV The parameters were obtained by fitting to the total and capture cross sections calculated with CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 9.6571E+00 Elastic 3.2545E+00 n,gamma 6.4026E+00 1.5402E+02 n,alpha 9.6431E-12 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. Thermal cross sections and resonance integrals at 300 K MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /4/. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross section. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. Below 5.2 keV, the cross sections should be calculated from RRPs. MT=103,600-649 (n,p) cross section Calculated with CCONE code /4/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /4/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /4/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /4/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /4/. 1/v cross sections were assumed below 5.2 keV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross section by the ratio of the CCONE calculations ( sig_na / sig_capture ) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT=51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. MT=600-649 (n,p) reaction Calculated with CCONE code /4/. MT=650-699 (n,d) reaction Calculated with CCONE code /4/. MT=700-749 (n,t) reaction Calculated with CCONE code /4/. MT=750-799 (n,He3) reaction Calculated with CCONE code /4/. MT=800-849 (n,a) reaction Calculated with CCONE code /4/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF= 9 Isomeric branching ratios MT=103 (n,p) reaction Calculated with CCONE code /4/. MT=107 (n,a) reaction Calculated with CCONE code /4/. MF=10 Nuclide production cross sections MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT=105 (n,t) reaction Calculated with CCONE code /4/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /4/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/5/ deuteron: J.M.Lohr and W.Haeberli/6/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/7/ neutron : S. Kunieda et al./8/ proton : A.J.Koning and J.P.Delaroche/9/ triton : F.D.Becchetti Jr. and G.W.Greenlees/7/ * Level scheme of I-127 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 5/2 + c 1 0.057610 7/2 + c 2 0.202860 3/2 + 3 0.295000 3/2 + 4 0.374990 1/2 + 5 0.417990 5/2 + 6 0.473000 3/2 + 7 0.618310 3/2 + 8 0.628690 7/2 + 9 0.650920 9/2 + c 10 0.716500 11/2 + c 11 0.744710 9/2 + 12 0.831000 11/2 + 13 0.883000 9/2 - 14 0.990940 5/2 + 15 1.044100 7/2 + 16 1.094370 5/2 + 17 1.122760 1/2 + 18 1.181400 9/2 + 19 1.218450 7/2 + 20 1.228910 5/2 - 21 1.235070 11/2 - 22 1.266600 13/2 + 23 1.274970 7/2 + 24 1.319000 9/2 + 25 1.342000 7/2 + 26 1.350200 9/2 + 27 1.363970 3/2 - 28 1.375000 7/2 + 29 1.401820 3/2 + 30 1.413200 9/2 + ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/10/) Energy dependent parameters of Mengoni-Nakajima/11/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- I-128 16.131 0.000 0.637 0.659 -2.041 5.071 0.581 I-127 16.028 1.065 1.070 0.624 -0.704 5.595 1.413 I-126 15.924 0.000 1.622 0.630 -2.003 4.750 0.591 I-125 15.820 1.073 1.884 0.603 -0.677 5.389 1.392 Te-127 16.028 1.065 0.101 0.681 -0.999 6.360 1.568 Te-126 15.924 2.138 0.363 0.662 0.232 7.100 2.812 Te-125 15.820 1.073 1.248 0.664 -1.161 6.276 1.322 Sb-125 15.820 1.073 -0.073 0.472 0.908 2.999 2.299 Sb-124 15.717 0.000 0.761 0.590 -1.233 3.766 0.804 Sb-123 15.613 1.082 1.086 0.541 0.216 4.154 1.896 --------------------------------------------------------- * Gamma-ray strength functions for I-128 E1: generalized lorentzian model(GLO)/12/ ER= 14.90 (MeV) EG= 4.80 (MeV) SIG= 270.00 (mb) ER= 6.00 (MeV) EG= 1.60 (MeV) SIG= 4.50 (mb) ER= 1.40 (MeV) EG= 1.00 (MeV) SIG= 0.10 (mb) (SLO) M1: standard lorentzian model(SLO) ER= 8.14 (MeV) EG= 4.00 (MeV) SIG= 1.38 (mb) E2: standard lorentzian model(SLO) ER= 12.50 (MeV) EG= 4.57 (MeV) SIG= 2.86 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 1174 (2015). 2) G.Noguere et al., Phys. Rev., C74, 054602 (2006). 3) T.Katoh et al., J. Nucl. Sci. Technol., 36, 223 (1999). 4) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 5) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 6) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 7) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 8) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 9) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 10) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 11) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 12) J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).