53-I -128 EVAL-Sep14 K.Shibata (JAEA) JNST 52, 1174 (2015) DIST-DEC21 20180718 ----JENDL-5 MATERIAL 5328 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 2014-09 Evaluated with CCONE code by K.Shibata (JAEA) /1/ 2018-07 Activation cross sections and MF=3,6/MT=600-849 added. 2020-10 Energies of discrete primary photons were corrected. MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance is given. Unresolved resonance region: 10 eV - 100 keV The parameters were obtained by fitting to the total and caputure cross sections calculated from CCONE /2/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- LFS 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.0146E+01 Elastic 4.1178E+00 n,gamma 6.0284E+00 1.7989E+02 n,p 7.9137E-06 n,alpha 3.7234E-07 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /2/. MT= 2 Elastic scattering cross section Calculated with CCONE code /2/. Obtained by subtracting non-elastic cross sections from total cross sections. Below 10 eV, the cross section is given by 4.0*pi*R**2, where R was estimated in the unresolved resonance region. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT=4,51-91 (n,n') cross section Calculated with CCONE code /2/. MT= 16 (n,2n) cross section Calculated with CCONE code /2/. MT= 17 (n,3n) cross section Calculated with CCONE code /2/. MT= 22 (n,na) cross section Calculated with CCONE code /2/. MT= 28 (n,np) cross section Calculated with CCONE code /2/. MT= 32 (n,nd) cross section Calculated with CCONE code /2/. MT= 41 (n,2np) cross section Calculated with CCONE code /2/. MT=102 Capture cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 10 eV. The thermal cross section was normalized to a value of 6.0259 b, which was estimated using the simplified formula./3/ MT=103,600-649 (n,p) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 10 eV. The thermal (n,p) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_np / sig_capture) at 0.0253 eV. MT=104,650-699 (n,d) cross section Calculated with CCONE code /2/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /2/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /2/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /2/. 1/v cross sections were assumed below 10 eV. The thermal (n,a) cross section was obtained by multiplying the thermal capture cross sections by the ratio of the CCONE calculations ( sig_na / sig_capture) at 0.0253 eV. MF= 4 Angular distributions of secondary neutrons MT= 2 Elastic scattering Calculated with CCONE code /2/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /2/. MT= 17 (n,3n) reaction Calculated with CCONE code /2/. MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT= 32 (n,nd) reaction Calculated with CCONE code /2/. MT= 41 (n,2np) reaction Calculated with CCONE code /2/. MT=51-91 (n,n') reaction Calculated with CCONE code /2/. MT=102 Capture reaction Calculated with CCONE code /2/. MT=600-649 (n,p) reaction Calculated with CCONE code /2/. MT=650-699 (n,d) reaction Calculated with CCONE code /2/. MT=700-749 (n,t) reaction Calculated with CCONE code /2/. MT=750-799 (n,He3) reaction Calculated with CCONE code /2/. MT=800-849 (n,a) reaction Calculated with CCONE code /2/. MF= 8 Information on decay data MT=4 (n,n') MT= 16 (n,2n) MT= 17 (n,3n) MT= 22 (n,na) MT= 28 (n,np) MT= 32 (n,nd) MT= 41 (n,2np) MT=102 Capture MT=103 (n,p) MT=104 (n,d) MT=105 (n,t) MT=106 (n,He3) MT=107 (n,a) MF=10 Nuclide production cross sections MT= 22 (n,na) reaction Calculated with CCONE code /2/. MT= 28 (n,np) reaction Calculated with CCONE code /2/. MT=104 (n,d) reaction Calculated with CCONE code /2/. MT=106 (n,He3) reaction Calculated with CCONE code /2/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /2/ ------------------------------------------------------------------ * Optical model potentials alpha : E.D.Arthur and P.G.Young/4/ deuteron: J.M.Lohr and W.Haeberli/5/ He-3 : F.D.Becchetti Jr. and G.W.Greenlees/6/ neutron : S. Kunieda et al./7/ proton : A.J.Koning and J.P.Delaroche/8/ triton : F.D.Becchetti Jr. and G.W.Greenlees/6/ * Level scheme of I-128 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 1 + c 1 0.027360 2 + c 2 0.085470 3 + c 3 0.128230 4 + c 4 0.133610 2 - 5 0.137850 4 - 6 0.143990 3 - 7 0.151640 3 + 8 0.160760 2 + 9 0.167370 6 - 10 0.180380 3 + 11 0.220930 2 + 12 0.226100 7 - 13 0.232580 4 + 14 0.234490 5 - 15 0.269710 6 - 16 0.285400 3 - 17 0.294360 5 - 18 0.295670 3 + 19 0.344520 3 + 20 0.372120 3 - 21 0.376620 4 - 22 0.385450 2 + 23 0.386590 3 - 24 0.392000 1 + 25 0.416280 3 + 26 0.426340 1 + 27 0.434350 4 + 28 0.435510 2 - 29 0.445300 3 - 30 0.480900 1 + 31 0.485420 1 + 32 0.518450 4 - 33 0.521080 4 - 34 0.529970 3 + 35 0.536480 1 + 36 0.549730 3 + 37 0.552320 5 - 38 0.554430 3 - 39 0.581300 1 - ----------------------- c: coupled-channel calc. * Level density parameters (Gilbert-Cameron model/9/) Energy dependent parameters of Mengoni-Nakajima/10/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- I-129 16.234 1.057 -0.106 0.624 -0.365 5.340 1.401 I-128 16.131 0.000 0.637 0.659 -2.041 5.071 0.581 I-127 16.028 1.065 1.070 0.624 -0.704 5.595 1.413 I-126 15.924 0.000 1.622 0.630 -2.003 4.750 0.591 Te-128 16.131 2.121 -0.942 0.739 -0.223 8.303 2.749 Te-127 16.028 1.065 0.101 0.681 -0.999 6.360 1.568 Te-126 15.924 2.138 0.363 0.662 0.232 7.100 2.812 Sb-126 15.924 0.000 -0.617 0.726 -2.249 5.894 0.128 Sb-125 15.820 1.073 -0.073 0.472 0.908 2.999 2.299 Sb-124 15.717 0.000 0.761 0.590 -1.233 3.766 0.804 --------------------------------------------------------- * Gamma-ray strength functions for I-129 E1: generalized lorentzian model(GLO)/11/ ER= 14.90 (MeV) EG= 4.80 (MeV) SIG= 270.00 (mb) ER= 6.00 (MeV) EG= 1.60 (MeV) SIG= 4.50 (mb) ER= 1.40 (MeV) EG= 1.00 (MeV) SIG= 0.10 (mb) (SLO) M1: standard lorentzian model(SLO) ER= 8.11 (MeV) EG= 4.00 (MeV) SIG= 1.35 (mb) E2: standard lorentzian model(SLO) ER= 12.47 (MeV) EG= 4.56 (MeV) SIG= 2.84 (mb) References 1) K.Shibata, J. Nucl. Sci. Technol., 52, 1174 (2015). 2) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007). 3) K. Shibata, J. Nucl. Sci. Technol., 51, 425 (2014). 4) E.D.Arthur and P.G.Young, Report LA-8636-MS(ENDF-304) (1980). 5) J.M.Lohr and W.Haeberli, Nucl. Phys. A232,381(1974). 6) F.D.Becchetti Jr. and G.W.Greenlees, Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 7) S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) A. Gilbert and A.G.W. Cameron, Can. J. Phys, 43, 1446 (1965). 10) A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994). 11) J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).