54-Xe-133 JAEA EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+ DIST-DEC21 20100316 ----JENDL-5 MATERIAL 5452 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-11 Re-evaluation was performed for JENDL-4.0 10-03 Compiled by S.Kunieda 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,28,32,41,102-104,107) JENDL/AD-2017 adopted (MF8/MT105,106) added (MF10/MT4,17,22,28,104) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters - No resolved resonance parameters are given. Below 80.5 eV, the capture and elastic scattering cross sections were assumed to be in 1/v form and constant, respectively. The capture cross section at 0.0253 eV was taken from Ref./1/, and the scattering cross section was estimated from r = 5.4 fm. Those data are given in MF=3. - Unresolved resonance region: 80.5 eV - 250 keV The parameters were obtained by fitting to the total and capture cross sections calculated by the POD code /2/. The ASREP code /3/ was employed in this evaluation. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections & resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.94262E+02 Elastic 3.61460E+00 n,gamma 1.90083E+02 8.90633E+01 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section The OPTMAN /4/ & POD /2/ calculations. MT= 3 Non-elastic cross section Sum of partial non-elastic cross sections. MT= 4,51-91 (n,n') cross section The OPTMAN /4/ & POD /2/ calculations. MT= 16 (n,2n) cross section MT= 17 (n,3n) cross section MT= 22 (n,na) cross section MT= 28 (n,np) cross section MT= 32 (n,nd) cross section MT=102 Capture cross section MT=103 (n,p) cross section MT=104 (n,d) cross section MT=105 (n,t) cross section MT=106 (n,He3) cross section MT=107 (n,a) cross section Calculated by the POD code /2/. MT=203 (n,xp) cross section Sum of (n,np) and (n,p) MT=204 (n,xd) cross section Sum of (n,nd) and (n,d) MT=205 (n,xt) cross section MT=206 (n,xHe3) cross section Calculated by the POD code /2/. MT=207 (n,xa) cross section Sum of (n,na) and (n,a) MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering The OPTMAN /4/ & POD /2/ calculations. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction MT= 17 (n,3n) reaction MT= 22 (n,na) reaction MT= 28 (n,np) reaction MT= 32 (n,nd) reaction Neutron spectra calculated by the POD code /2/. MT= 51-90 (n,n') reaction Neutron angular distributions calculated by OPTMAN /4/ & POD /2/. MT= 91 (n,n') reaction Neutron spectra calculated by the POD code /2/. MT= 203 (n,xp) reaction MT= 204 (n,xd) reaction MT= 205 (n,xt) reaction MT= 206 (n,xHe3) reaction MT= 207 (n,xa) reaction Light-ion spectra calculated by the POD code /6/. MF=12 Gamma-ray multiplicities MT= 3 Non-elastic gamma emission Calculated by the POD code /2/. MF=14 Gamma-ray angular distributions MT= 3 Non-elastic gamma emission Assumed to be isotropic. MF=15 Gamma-ray spectra MT= 3 Non-elastic gamma emission Calculated by the POD code /2/. *************************************************************** * Nuclear Model Calculations with POD Code /2/ * *************************************************************** 1. Theoretical models The POD code is based on the spherical optical model, the distorted-wave Born approximaiton (DWBA), one-component exciton preequilibrium model, and the Hauser-Feshbach-Moldauer statis- tical model. With the preequilibrium model, semi-empirical pickup and knockout process can be taken into account for composite-particle emission. The gamma-ray emission from the compound nucleus can be calculated within the framework of the exciton model. The code is capable of reading in particle transmission coefficients calculated by separate spherical or coupled-channel optical model code. In this evaluation, the OPTMAN code /4/ was employed for neutrons, while the ECIS code /5/ was adopted for charged particles. 2. Optical model & parameters Neutrons: Model: The coupled-channel method based on the rigid-rotor model was adopted. Deformation parameter beta2 was taken from ref./6/ OMP : Coupled-channel optical potential /7/ was applied. Protons: Model: Spherical OMP : Koning and Delaroche /8/ Deuterons: Model: Spherical OMP : Bojowald et al. /9/ Tritons: Mode: Spherical OMP : Becchetti and Greenlees /10/ He-3: Model: Spherical OMP : Becchetti and Greenlees /10/ Alphas: Model: Spherical OMP : A simplified folding model potential /11/ (The nucleon OMP was taken from Ref./7/.) 3. Level scheme of Xe-133 ------------------------------------ No. Ex(MeV) J PI CC ------------------------------------ 0 0.00000 3/2 + * 1 0.23322 11/2 - 2 0.26270 1/2 + 3 0.52987 5/2 + * 4 0.60787 5/2 + 5 0.68026 3/2 + 6 0.74375 7/2 - 7 0.87533 7/2 + 8 0.91145 1/2 + ------------------------------------ Levels above 0.92145 MeV are assumed to be continuous. 4. Level density parameters Energy-dependent parameters of Mengoni-Nakajima /12/ were used ---------------------------------------------------------- Nuclei a* Pair Esh T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV ---------------------------------------------------------- Xe-134 16.449 2.073 -2.814 0.742 0.503 7.492 2.409 Xe-133 16.992 1.041 -1.762 0.696 -0.731 6.456 0.911 Xe-132 16.240 2.089 -1.146 0.723 0.006 8.026 2.425 Xe-131 16.786 1.048 -0.172 0.686 -1.237 7.025 0.700 I -133 15.660 1.041 -3.586 0.875 -1.279 8.089 2.025 I -132 16.152 0.000 -2.493 0.768 -1.905 5.957 0.162 I -131 15.458 1.048 -1.637 0.769 -1.003 7.186 1.623 Te-131 22.166 1.048 -3.417 0.613 -0.582 5.846 1.043 Te-130 16.030 2.105 -2.605 0.776 0.213 8.078 1.815 Te-129 20.892 1.057 -1.456 0.590 -0.837 6.047 0.360 ---------------------------------------------------------- 5. Gamma-ray strength functions M1, E2: Standard Lorentzian (SLO) E1 : Generalized Lorentzian (GLO) /13/ 6. Preequilibrium process Preequilibrium is on for n, p, d, t, He-3, and alpha. Preequilibrium capture is on. References 1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007). 3) Y.Kikuchi et al., JAERI-Data/Code 99-025 (1999) [in Japanese]. 4) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005). 5) J.Raynal, CEA Saclay report, CEA-N-2772 (1994). 6) S.Raman et al., At. Data and Nucl. Data Tables 78, 1 (1995) 7) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007). 8) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 9) Bojowald et al., Phys. Rev. C 38, 1153 (1988). 10) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization Phenomena in Nuclear Reactions," p.682, The University of Wisconsin Press (1971). 11) D.G.Madland, NEANDC-245 (1988), p. 103. 12) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994). 13) M.Brink, Ph.D thesis, Oxford University, 1955.