55-Cs-134 JAEA+ EVAL-Apr09 N.Iwamoto,H.Matsunobu DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5528 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-04 The resolved resonance parameters were evaluated by H.Matsunobu. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,32,33,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT29,30,34,44,45,106,108,111,112,115-117) added (MF9/MT102,103) JENDL/AD-2017 adopted (MF10/MT4,22,28,33,104) JENDL/AD-2017 based 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula) : below 270 eV The resonance energies, neutron widths and radiation widths were based on the measurements by Anufriev et al./1/. The average radiation width of 160 meV was adopted for the resonance levels whose radiation width was unknown. The value of neutron orbital angular momentum l was assumed to be 0 for all resonance levels. The values of total spin j for all resonance levels were estimated with a random number method. Scattering radius was taken from the graph (fig. 1, Part A) given by Mughabghab et al./2/. A negative resonance was added so as to reproduce the thermal capture cross section of 140.6+-8.5 barns at 0.0253 eV measured by Nakamura et al./3/ Unresolved resonance region : 270 eV - 100 keV The unresolved resonance paramters (URP) were determined by ASREP code /4/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /5/ and CCONE /6/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 1.6355e+02 Elastic 2.2917e+01 n,gamma 1.4064e+02 7.2504e+01 n,p 6.2615e-07 n,alpha 5.7485e-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /6/. MT= 16 (n,2n) cross section Calculated with CCONE code /6/. MT= 17 (n,3n) cross section Calculated with CCONE code /6/. MT= 22 (n,na) cross section Calculated with CCONE code /6/. MT= 24 (n,2na) cross section Calculated with CCONE code /6/. MT= 28 (n,np) cross section Calculated with CCONE code /6/. MT= 29 (n,n2a) cross section Calculated with CCONE code /6/. MT= 30 (n,2n2a) cross section Calculated with CCONE code /6/. MT= 32 (n,nd) cross section Calculated with CCONE code /6/. MT= 33 (n,nt) cross section Calculated with CCONE code /6/. MT= 34 (n,nHe3) cross section Calculated with CCONE code /6/. MT= 41 (n,2np) cross section Calculated with CCONE code /6/. MT= 44 (n,n2p) cross section Calculated with CCONE code /6/. MT= 45 (n,npa) cross section Calculated with CCONE code /6/. MT= 51-91 (n,n') cross section Calculated with CCONE code /6/. MT=102 Capture cross section Calculated with CCONE code /6/. MT=103 (n,p) cross section Calculated with CCONE code /6/. MT=104 (n,d) cross section Calculated with CCONE code /6/. MT=105 (n,t) cross section Calculated with CCONE code /6/. MT=106 (n,He3) cross section Calculated with CCONE code /6/. MT=107 (n,a) cross section Calculated with CCONE code /6/. MT=108 (n,2a) cross section Calculated with CCONE code /6/. MT=111 (n,2p) cross section Calculated with CCONE code /6/. MT=112 (n,pa) cross section Calculated with CCONE code /6/. MT=115 (n,pd) cross section Calculated with CCONE code /6/. MT=116 (n,pt) cross section Calculated with CCONE code /6/. MT=117 (n,da) cross section Calculated with CCONE code /6/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /6/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /6/. MT= 17 (n,3n) reaction Calculated with CCONE code /6/. MT= 22 (n,na) reaction Calculated with CCONE code /6/. MT= 24 (n,2na) reaction Calculated with CCONE code /6/. MT= 28 (n,np) reaction Calculated with CCONE code /6/. MT= 29 (n,n2a) reaction Calculated with CCONE code /6/. MT= 30 (n,2n2a) reaction Calculated with CCONE code /6/. MT= 32 (n,nd) reaction Calculated with CCONE code /6/. MT= 33 (n,nt) reaction Calculated with CCONE code /6/. MT= 34 (n,nHe3) reaction Calculated with CCONE code /6/. MT= 41 (n,2np) reaction Calculated with CCONE code /6/. MT= 44 (n,n2p) reaction Calculated with CCONE code /6/. MT= 45 (n,npa) reaction Calculated with CCONE code /6/. MT= 51-91 (n,n') reaction Calculated with CCONE code /6/. MT=102 Capture reaction Calculated with CCONE code /6/. ***************************************************************** Nuclear Model Calculation with CCONE code /6/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * optical model potential neutron omp: Kunieda,S. et al./7/ (+) proton omp: Koning,A.J. and Delaroche,J.P./8/ deuteron omp: Lohr,J.M. and Haeberli,W./9/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ alpha omp: McFadden,L. and Satchler,G.R./11/ (+) omp parameters were modified. 2) Two-component exciton model/12/ * Global parametrization of Koning-Duijvestijn/13/ was used. * Gamma emission channel/14/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/15/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/16/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /17/,/18/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Cs-134 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 4 + 1 0.01124 5 + 2 0.06003 3 + 3 0.13874 8 - 4 0.17379 3 + 5 0.17640 4 - 6 0.17664 1 + 7 0.19026 3 + 8 0.19362 4 - 9 0.19778 2 + 10 0.20955 4 + 11 0.23433 3 + 12 0.25711 6 - 13 0.26766 4 - 14 0.27135 3 + 15 0.29097 2 + 16 0.34436 7 - 17 0.37710 4 + 18 0.38298 6 - 19 0.43417 7 - 20 0.45024 5 - 21 0.45143 3 + 22 0.45409 4 + 23 0.48366 3 - 24 0.50284 3 + 25 0.51932 4 + 26 0.53966 3 + 27 0.57083 4 - 28 0.57913 2 + 29 0.58418 3 + 30 0.61302 5 - 31 0.62200 3 + 32 0.62401 5 - 33 0.64070 8 - 34 0.64396 4 - 35 0.65330 3 - 36 0.66500 4 + 37 0.67600 5 - 38 0.68070 5 + 39 0.68450 3 - 40 0.68863 4 + ------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Cs-135 16.6000 1.0328 -1.8144 0.6675 -0.2856 5.6078 Cs-134 17.0000 0.0000 -0.8946 0.7066 -2.2698 5.8956 Cs-133 16.4429 1.0405 -0.1729 0.7096 -1.3562 6.9453 Cs-132 15.0210 0.0000 0.5030 0.7096 -2.0934 5.3772 Xe-134 17.1069 2.0733 -2.8193 0.7693 -0.1097 8.7590 Xe-133 18.7000 1.0405 -1.7673 0.6413 -0.6524 6.0509 Xe-132 16.8500 2.0889 -1.1507 0.6595 0.5201 6.8662 Xe-131 18.6500 1.0484 -0.1767 0.6072 -0.8373 5.8792 I-133 16.1297 1.0405 -3.5913 0.8275 -1.0073 8.1906 I-132 16.6361 0.0000 -2.4976 0.7769 -2.2437 6.6852 I-131 15.9219 1.0484 -1.6425 0.7356 -0.8231 6.6968 I-130 16.4000 0.0000 -0.6800 0.8536 -4.2325 9.0264 I-129 15.7137 1.0565 -0.1025 0.6848 -0.7998 6.1306 I-128 16.4000 0.0000 0.6379 0.7507 -3.3087 6.9967 -------------------------------------------------------- Table 3. Gamma-ray strength function for Cs-135 -------------------------------------------------------- * E1: ER = 15.25 (MeV) EG = 4.41 (MeV) SIG = 230.00 (mb) ER = 6.20 (MeV) EG = 2.20 (MeV) SIG = 3.90 (mb) ER = 2.10 (MeV) EG = 5.60 (MeV) SIG = 0.40 (mb) * M1: ER = 7.99 (MeV) EG = 4.00 (MeV) SIG = 1.11 (mb) * E2: ER = 12.28 (MeV) EG = 4.49 (MeV) SIG = 2.97 (mb) -------------------------------------------------------- References 1) Anufriev, V.A. et al.: AE,63.(5),346 (1987). 2) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 3) Nakamura, S. et al.: J. Nucl. Sci. Technol., 36, 635 (1999). 4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 12) Kalbach,C.: Phys. Rev. C33, 818 (1986). 13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).