55-Cs-137 JAEA EVAL-Apr09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 5537 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-04 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,29,32-34,41,44,45,102- 108,111,112,115-117) added 21-11 above 20 MeV, JENDL/ImPACT-2018 merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters No resolved resonance parameters Energy boundary was determined so as to reproduce the capture resonance integral of 0.35+-0.07 barn measured by Harada et al. /1/ Unresolved resonance region : 640 eV - 150 keV The unresolved resonance paramters (URP) were determined by ASREP code /2/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /3/ and CCONE /4/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 3.8184e+00 Elastic 3.5433e+00 n,gamma 2.7010e-01 3.5439e-01 n,alpha 1.6940e-18 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /4/. MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 24 (n,2na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT= 29 (n,n2a) cross section Calculated with CCONE code /4/. MT= 30 (n,2n2a) cross section Calculated with CCONE code /4/. MT= 32 (n,nd) cross section Calculated with CCONE code /4/. MT= 33 (n,nt) cross section Calculated with CCONE code /4/. MT= 34 (n,nHe3) cross section Calculated with CCONE code /4/. MT= 41 (n,2np) cross section Calculated with CCONE code /4/. MT= 44 (n,n2p) cross section Calculated with CCONE code /4/. MT= 45 (n,npa) cross section Calculated with CCONE code /4/. MT= 51-91 (n,n') cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=104 (n,d) cross section Calculated with CCONE code /4/. MT=105 (n,t) cross section Calculated with CCONE code /4/. MT=106 (n,He3) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section Calculated with CCONE code /4/. MT=108 (n,2a) cross section Calculated with CCONE code /4/. MT=111 (n,2p) cross section Calculated with CCONE code /4/. MT=112 (n,pa) cross section Calculated with CCONE code /4/. MT=115 (n,pd) cross section Calculated with CCONE code /4/. MT=116 (n,pt) cross section Calculated with CCONE code /4/. MT=117 (n,da) cross section Calculated with CCONE code /4/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /4/. MT= 17 (n,3n) reaction Calculated with CCONE code /4/. MT= 22 (n,na) reaction Calculated with CCONE code /4/. MT= 24 (n,2na) reaction Calculated with CCONE code /4/. MT= 28 (n,np) reaction Calculated with CCONE code /4/. MT= 29 (n,n2a) reaction Calculated with CCONE code /4/. MT= 30 (n,2n2a) reaction Calculated with CCONE code /4/. MT= 32 (n,nd) reaction Calculated with CCONE code /4/. MT= 33 (n,nt) reaction Calculated with CCONE code /4/. MT= 34 (n,nHe3) reaction Calculated with CCONE code /4/. MT= 41 (n,2np) reaction Calculated with CCONE code /4/. MT= 44 (n,n2p) reaction Calculated with CCONE code /4/. MT= 45 (n,npa) reaction Calculated with CCONE code /4/. MT= 51-91 (n,n') reaction Calculated with CCONE code /4/. MT=102 Capture reaction Calculated with CCONE code /4/. ***************************************************************** Nuclear Model Calculation with CCONE code /4/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * optical model potential neutron omp: Kunieda,S. et al./5/ (+) proton omp: Koning,A.J. and Delaroche,J.P./6/ deuteron omp: Lohr,J.M. and Haeberli,W./7/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/ alpha omp: McFadden,L. and Satchler,G.R./9/ (+) omp parameters were modified. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/13/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/14/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /15/,/16/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Cs-137 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 7/2 + 1 0.45549 5/2 + 2 0.84888 3/2 - 3 1.18469 11/2 + 4 1.27320 11/2 + 5 1.49000 1/2 + 6 1.56411 5/2 - 7 1.56983 5/2 - 8 1.57483 9/2 + 9 1.65123 5/2 + 10 1.67169 15/2 + 11 1.78346 3/2 - 12 1.86786 9/2 - 13 1.89399 17/2 + 14 1.91627 7/2 - 15 2.06802 5/2 + ------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Cs-138 17.6084 0.0000 -2.9194 0.6945 -1.4571 5.1887 Cs-137 16.8656 1.0252 -3.8037 0.6992 0.1372 5.5205 Cs-136 18.0000 0.0000 -2.9176 0.6768 -1.3925 5.0000 Cs-135 16.6000 1.0328 -1.8144 0.6675 -0.2856 5.6078 Xe-137 25.7000 1.0252 -3.8960 0.4707 0.4322 3.9078 Xe-136 17.3240 2.0580 -4.8277 0.7973 0.5592 8.7610 Xe-135 20.2000 1.0328 -3.8043 0.5665 0.4707 4.2857 Xe-134 17.1069 2.0733 -2.8193 0.7693 -0.1097 8.7590 I-136 17.0611 0.0000 -5.0302 0.7778 -1.0787 5.8529 I-135 16.3372 1.0328 -5.8723 0.8855 -0.3830 9.0941 I-134 16.8488 0.0000 -4.8096 0.8747 -2.2475 8.6722 I-133 16.1297 1.0405 -3.5913 0.8275 -1.0073 8.1906 I-132 16.6361 0.0000 -2.4976 0.7769 -2.2437 6.6852 I-131 15.9219 1.0484 -1.6425 0.7356 -0.8231 6.6968 -------------------------------------------------------- Table 3. Gamma-ray strength function for Cs-138 -------------------------------------------------------- * E1: ER = 15.25 (MeV) EG = 4.41 (MeV) SIG = 230.00 (mb) ER = 6.20 (MeV) EG = 2.20 (MeV) SIG = 3.90 (mb) ER = 2.10 (MeV) EG = 5.60 (MeV) SIG = 0.40 (mb) * M1: ER = 7.93 (MeV) EG = 4.00 (MeV) SIG = 1.06 (mb) * E2: ER = 12.19 (MeV) EG = 4.45 (MeV) SIG = 2.93 (mb) -------------------------------------------------------- References 1) Harada,H. et al.: "Proc. The 1990 Symposium on Nucl. Data", JAERI-M 91-032, P.199 (1991). 2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 9) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 10) Kalbach,C.: Phys. Rev. C33, 818 (1986). 11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).