60-Nd-142 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6025 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The resolved resonance parameters were evaluated by A.Zukeran. The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-10 JENDL-5b3 revised by N.Iwamoto (MF2/MT151) reevaluated (MF3,6/MT600-849) added (MF8/MT4-107) added (MF9/MT107) added (MF10/MT16,103) added MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonance parameters Resolved resonance region (MLBW formula): below 26.0 keV Evaluation for JENDL-2 was made by mainly on the basis of the data measured by Tellier/1/ and Musgrove et al./2/ Resonance energies were adjusted to those of Tellier. Average radiation widths were assumed to be 0.078 eV for s-wave and some large p-wave resonances and to be 0.046 eV for p-wave ones. For JENDL-3, parameters of a negative resonance was modified so as to reproduce the thermal capture cross section of 18.7+-0.7 barns/3/ and the resonance integral. However, the calculated resonance integral is still too small. For JENDL-3.2, these resonance parameters were modified so as to reproduce the capture area data measured at ORNL, by taking account of the correction factor (0.967) announced by Allen et al./4/. The parameters of a negative resonance and scattering radius were adjuseted to get better agreement with recommended thermal cross sections/5/. In JENDL-4, the data for 2.2 - 20.77 keV were updated by using the capture area and g*Gamma_n data measured by Wisshak et al./6/ Angulara momenta L and J remain unchanged from JENDL-3.3. In JENDL-5, the resonances of 218, 235, 636, 956, 1119 and 1485-eV were deleted/7/. Unresolved resonance region : 26.0 keV - 200.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /8/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /9/ and CCONE /10/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.64207E+01 Elastic 7.71588E+00 n,gamma 1.87048E+01 8.31115E+00 n,alpha 1.52707E-05 6.96314E-06 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /10/. MT= 16 (n,2n) cross section Calculated with CCONE code /10/. MT= 17 (n,3n) cross section Calculated with CCONE code /10/. MT= 22 (n,na) cross section Calculated with CCONE code /10/. MT= 28 (n,np) cross section Calculated with CCONE code /10/. MT= 32 (n,nd) cross section Calculated with CCONE code /10/. MT= 51-91 (n,n') cross section Calculated with CCONE code /10/. MT=102 Capture cross section Calculated with CCONE code /10/. MT=103 (n,p) cross section Calculated with CCONE code /10/. MT=104 (n,d) cross section Calculated with CCONE code /10/. MT=105 (n,t) cross section Calculated with CCONE code /10/. MT=106 (n,He3) cross section Calculated with CCONE code /10/. MT=107 (n,a) cross section Calculated with CCONE code /10/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /10/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /10/. MT= 17 (n,3n) reaction Calculated with CCONE code /10/. MT= 22 (n,na) reaction Calculated with CCONE code /10/. MT= 28 (n,np) reaction Calculated with CCONE code /10/. MT= 32 (n,nd) reaction Calculated with CCONE code /10/. MT= 51-91 (n,n') reaction Calculated with CCONE code /10/. MT=102 Capture reaction Calculated with CCONE code /10/. ***************************************************************** Nuclear Model Calculation with CCONE code /10/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,1,2,3,8 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./11/ (+) proton omp: Koning,A.J. and Delaroche,J.P./12/ deuteron omp: Lohr,J.M. and Haeberli,W./13/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./14/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./14/ alpha omp: McFadden,L. and Satchler,G.R./15/ (+) omp parameters were modified. 2) Two-component exciton model/16/ * Global parametrization of Koning-Duijvestijn/17/ was used. * Gamma emission channel/18/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/19/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/20/. Parameters are shown in Table 2. * Gamma-ray strength function of generalized Lorentzian form /21/,/22/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Nd-142 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 1.57578 2 + * 2 2.08394 3 - * 3 2.10079 4 + * 4 2.20931 6 + 5 2.21749 0 + 6 2.24400 1 - 7 2.34000 4 - 8 2.38434 2 + * 9 2.43717 4 + 10 2.51389 5 + 11 2.51500 1 - 12 2.52900 1 + 13 2.54728 3 + 14 2.58309 2 + 15 2.58555 1 + 16 2.65600 0 + 17 2.73726 4 + 18 2.77600 1 - 19 2.84586 2 + 20 2.87300 4 + 21 2.88631 6 + 22 2.95800 0 + 23 2.97590 5 - 24 2.98310 0 + 25 3.00997 4 + 26 3.04520 2 + 27 3.08106 4 + 28 3.08585 5 + 29 3.12806 2 + ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179 Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278 Nd-141 17.8113 1.0106 -0.4633 0.5388 0.1405 4.2362 Nd-140 17.0742 2.0284 0.1378 0.5639 0.9372 5.6042 Pr-142 16.4000 0.0000 -0.4377 0.7390 -2.6336 6.4135 Pr-141 16.4637 1.0106 -1.2280 0.6590 -0.3966 5.5793 Pr-140 16.9753 0.0000 -0.5433 0.5678 -0.9137 3.4023 Pr-139 16.2632 1.0178 0.3167 0.5797 -0.0663 4.6220 Ce-141 17.9000 1.0106 -1.0773 0.4985 0.5829 3.4550 Ce-140 17.0742 2.0284 -1.9470 0.5674 1.4861 4.9920 Ce-139 15.5000 1.0178 -1.1255 0.5922 0.4151 4.0889 Ce-138 16.8661 2.0430 -0.4123 0.5781 1.0263 5.6162 Ce-137 18.4300 1.0252 0.5020 0.5105 0.0280 4.2432 -------------------------------------------------------- Table 3. Gamma-ray strength function for Nd-143 -------------------------------------------------------- * E1: ER = 15.01 (MeV) EG = 4.75 (MeV) SIG = 349.00 (mb) * M1: ER = 7.84 (MeV) EG = 4.00 (MeV) SIG = 0.70 (mb) * E2: ER = 12.05 (MeV) EG = 4.39 (MeV) SIG = 3.41 (mb) -------------------------------------------------------- References 1) Tellier, H.: CEA-N-1459 (1971). 2) Musgrove, A.R. de L., et al.: AEEC/E401 (1977). 3) Fedorova, A.F., et al.: Proc. 3rd All-union Conf. on Neutron Physics, Kiev 1975, Vol. 1, 169. 4) Allen, B.J., et al.: Nucl. Sci. Eng., 82, 230 (1982). 5) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 6) Wisshak, K., et al.: Phys. Rev., C57, 3452 (1998). 7) Katabuchi,T. et al.: Phys. Rev. C91, 037603 (2015). 8) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 9) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 10) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 11) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 12) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 13) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 14) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 15) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 16) Kalbach,C.: Phys. Rev. C33, 818 (1986). 17) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 18) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 19) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 20) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 21) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 22) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).