60-Nd-147 JAEA EVAL-Dec09 N.Iwamoto DIST-DEC21 20100119 ----JENDL-5 MATERIAL 6040 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 09-12 The data above the resolved resonance region were evaluated and compiled by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT4,16,17,22,24,28,30,32,33,37,41,102-105,107) JENDL/AD-2017 adopted (MF8/MT106) added (MF10/MT33) JENDL/AD-2017 based MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved and unresolved resonances RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 36 EV RESONANCE ENERGIES WERE BASED ON THE DATA OF REF./1/. NEUTRON WIDTHS WERE DERIVED FROM THE DATA OF 2*G*GAMMA(N) AND THE TOTAL SPIN J WHICH WAS ASSUMED TO BE 3 FOR ALL THE RESONANCES. AVERAGE RADIATION WIDTH WAS ASSUMED TO BE 0.075 EV/1/. THE SCATTERING RADIUS WAS TAKEN FROM THE SYSTEMATICS SHOWN IN REF./1/. A negative resonance was added so as to reproduce the thermal capture cross section suggested by Suyama and Mochizuki /2/. Unresolved resonance region : 36.0 eV - 120.0 keV The unresolved resonance paramters (URP) were determined by ASREP code /3/ so as to reproduce the evaluated total and capture cross sections calculated with optical model code OPTMAN /4/ and CCONE /5/. The unresolved parameters should be used only for self-shielding calculation. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 2.2307e+02 Elastic 7.9547e+01 n,gamma 1.4353e+02 5.7390e+02 n,alpha 4.1135e-04 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Sum of partial cross sections. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic scattering cross sections from total cross section. MT= 4 (n,n') cross section Calculated with CCONE code /5/. MT= 16 (n,2n) cross section Calculated with CCONE code /5/. MT= 17 (n,3n) cross section Calculated with CCONE code /5/. MT= 22 (n,na) cross section Calculated with CCONE code /5/. MT= 24 (n,2na) cross section Calculated with CCONE code /5/. MT= 28 (n,np) cross section Calculated with CCONE code /5/. MT= 30 (n,2n2a) cross section Calculated with CCONE code /5/. MT= 32 (n,nd) cross section Calculated with CCONE code /5/. MT= 33 (n,nt) cross section Calculated with CCONE code /5/. MT= 37 (n,4n) cross section Calculated with CCONE code /5/. MT= 41 (n,2np) cross section Calculated with CCONE code /5/. MT= 51-91 (n,n') cross section Calculated with CCONE code /5/. MT=102 Capture cross section Calculated with CCONE code /5/. MT=103 (n,p) cross section Calculated with CCONE code /5/. MT=104 (n,d) cross section Calculated with CCONE code /5/. MT=105 (n,t) cross section Calculated with CCONE code /5/. MT=106 (n,He3) cross section Calculated with CCONE code /5/. MT=107 (n,a) cross section Calculated with CCONE code /5/. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /5/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Calculated with CCONE code /5/. MT= 17 (n,3n) reaction Calculated with CCONE code /5/. MT= 22 (n,na) reaction Calculated with CCONE code /5/. MT= 24 (n,2na) reaction Calculated with CCONE code /5/. MT= 28 (n,np) reaction Calculated with CCONE code /5/. MT= 30 (n,2n2a) reaction Calculated with CCONE code /5/. MT= 32 (n,nd) reaction Calculated with CCONE code /5/. MT= 33 (n,nt) reaction Calculated with CCONE code /5/. MT= 37 (n,4n) reaction Calculated with CCONE code /5/. MT= 41 (n,2np) reaction Calculated with CCONE code /5/. MT= 51-91 (n,n') reaction Calculated with CCONE code /5/. MT=102 Capture reaction Calculated with CCONE code /5/. ***************************************************************** Nuclear Model Calculation with CCONE code /5/ ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model * coupled channels calculation coupled levels: 0,8 (see Table 1) * optical model potential neutron omp: Kunieda,S. et al./6/ (+) proton omp: Koning,A.J. and Delaroche,J.P./7/ deuteron omp: Lohr,J.M. and Haeberli,W./8/ triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/ alpha omp: McFadden,L. and Satchler,G.R./10/ (+) omp parameters were modified. 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Width fluctuation correction/14/ was applied. * Neutron, proton, deuteron, triton, He3, alpha and gamma decay channel were taken into account. * Transmission coefficients of neutrons were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction/15/. Parameters are shown in Table 2. * Gamma-ray strength function of enhanced generalized Lorentzian form/16/,/17/ was used for E1 transition. For M1 and E2 transitions the standard Lorentzian form was adopted. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Nd-147 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 5/2 - * 1 0.04993 7/2 - 2 0.12792 5/2 - 3 0.19029 9/2 - 4 0.21460 1/2 - 5 0.31467 3/2 - 6 0.46362 3/2 - 7 0.51671 5/2 - 8 0.58131 7/2 - * 9 0.60452 1/2 - 10 0.63149 3/2 - 11 0.65600 1/2 + 12 0.74900 1/2 - 13 0.76918 3/2 + 14 0.79256 3/2 - 15 0.80900 5/2 + 16 0.85900 3/2 - 17 0.90400 3/2 - 18 0.93400 13/2 + 19 0.94206 5/2 + 20 0.95726 3/2 - 21 0.98300 7/2 - 22 1.02900 3/2 - 23 1.04148 1/2 - ------------------- *) Coupled levels in CC calculation Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010 Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470 Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542 Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189 Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190 Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888 Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472 Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766 Pr-144 15.5000 0.0000 0.9153 0.6715 -1.9662 5.0412 Pr-143 16.6639 1.0035 0.4682 0.6161 -0.5920 5.4208 Ce-146 17.6964 1.9863 2.1733 0.5745 0.0448 6.5077 Ce-145 18.2180 0.9965 1.7406 0.5686 -0.8969 5.4793 Ce-144 17.4894 2.0000 1.0129 0.5822 0.3675 6.2813 Ce-143 19.6000 1.0035 0.4100 0.4774 0.1189 3.9645 Ce-142 18.9500 2.0140 -0.3155 0.5558 0.6875 5.9346 Ce-141 17.9000 1.0106 -1.0773 0.4985 0.5829 3.4550 Ce-140 17.0742 2.0284 -1.9470 0.5674 1.4861 4.9920 -------------------------------------------------------- Table 3. Gamma-ray strength function for Nd-148 -------------------------------------------------------- K0 = 1.800 E0 = 4.500 (MeV) * E1: ER = 12.76 (MeV) EG = 3.97 (MeV) SIG = 107.00 (mb) ER = 15.48 (MeV) EG = 5.30 (MeV) SIG = 220.00 (mb) * M1: ER = 7.75 (MeV) EG = 4.00 (MeV) SIG = 1.39 (mb) * E2: ER = 11.91 (MeV) EG = 4.33 (MeV) SIG = 3.34 (mb) -------------------------------------------------------- References 1) Mughabghab,S.F. et al.: "Neutron Cross Sections, Vol. I, Part A", Academic Press (1981). 2) Suyama,K. and Mochizuki,H.: J. Nucl Sci. Technol., 42, 661 (2005). 3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999) [in Japanese]. 4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004). 5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007). 6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007). 7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003) [Global potential]. 8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974). 9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept. J.H.Williams Lab., Univ. Minnesota (1969). 10) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966). 11) Kalbach,C.: Phys. Rev. C33, 818 (1986). 12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004). 13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985). 14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980). 15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151 (1994). 16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990). 17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).